PEMBANDINGAN ANTARA T² HOTELLING DAN ANALISIS KOMPONEN UTAMA PADA PENGENDALIAN PROSES STATISTIKA
(The Comparison of T² Hotelling and Principal Component Analysis of Statistical Process Control)

Oki Dwipurwani
Jurusan Matematika FMIPA Universitas Sriwijaya

T² Hotelling have been used successfully as a multivariate statistical process control tool for detecting fault in processes with correlated variables. In the present work, principal component analysis (PCA) is proposed for improvement of monitoring performance, i.e. PCA finds linear combination of variables that describe major trends in data set, furthermore PCA can be used to reduced dimensionality. The number of principal component used for contraction is usually smaller than that original variables. The result show that although the reliability of PCA is the same as T² Hotelling methode in many cases of simulation data, but reduction variables make the process be simple.

Key Words: Fault detection, Monitoring, Statistical process control, T² Hotelling, Principal component analysis.

PENDAHULUAN
Latar Belakang Masalah

Pendekatan dengan sekumpulan data yang berkenaan dengan pengendalian proses statistika dan bagan tradisional pengendalian proses statistika seperti bagan Shewhart, bagan jumlah kumulatif, bagan perpindahan rata-rata dan bagan perpindahan rata-rata geometrik, telah banyak digunakan. Bagan pengendalian proses tersebut sangat baik untuk memonitor proses peubah tunggal, tetapi tidak akan berfungsi baik untuk proses dengan peubah banyak yang berkorelasi antara peubahnya.

Oleh karena itu maka dikembangkan pengendali proses peubah ganda, Multivariate Statistical Process Control (MSPC).

Bagan statistik T² Hotelling untuk pengendalian proses peubah ganda dan pengendalian rataan bergerak geometri peubah ganda, serta pengendalian jumlah kumulatif peubah ganda, merupakan beberapa metode yang dapat digunakan untuk proses pengendalian peubah ganda.

Meskipun demikian metode-metode tersebut diatas tidak efisien apabila diapliskasikan pada proses yang menggunakan banyak peubah dan saling berkorelasi antara peubahnya, karena proses menjadi tidak sederhana. AKU merupakan salah satu
metode untuk pengendalian proses yang dalam pengoperasiannya metode ini dapat mereduksi jumlah peubah proses yang saling berkorelasii. Batas pengendalian pada AKU dibuat dalam dua macam statistik T^2 dan Q. T^2 adalah ukuran dari keragaman beberapa KU pertama, sedangkan Q adalah ukuran keragaman yang tersisa.

Tujuan Penelitian

Penelitian ini dilakukan untuk membandingkan metode T^2 Hotelling dengan metode AKU pada data bangkitan peubah ganda. Kemudian meneliti metode mana yang lebih baik.

TINJAUAN PUSTAKA

Pada rancangan pengendali peubah ganda dengan pengamatan tunggal, statistik T^2 ditulis sebagai

$$T_i^2 = (x_i - x)^T S^{-1} (x_i - x)$$

dengan x dan S berturut-turut adalah .vektor rata-rata dan matriks koragam dari contoh berukuran N (Tracy, 1992).

Jika pengendalian masih pada tahap untuk menemukan data referensi, disarankan menggunakan sebaran Beta sebagai sebaran pasti bagi T^2, berupa

$$T_i^2 \sim \frac{(N-1)^2}{N} B_{p/(N-P-1)/2} (\alpha)$$

(Tracy, 1992) (1)

Bila x dan S^{-1} dihitung dari data referensi, maka untuk pengamatan yang baru x_i dalam menentukan batas pengendalinya dapat menggunakan sebaran F, berupa

$$T_i^2 = (x_i - x)^T S^{-1} (x_i - x) \sim \frac{P(N-1)^2}{N(N-P)} F_{p/(N-P)}$$

(Tracy, 1992) (2)

dengan batas pengendali

$$BPA = \frac{P(N-1)^2}{N(N-P)} F_{p/(N-P)} (\alpha)$$

(3)

2. Analisis Komponen Utama

Andaikan peubah asal X, $X^T=(X_1, X_2, ..., X_p)$ merupakan vektor peubah acak yang diamati menyebab menurut sebaran normal ganda, nilai tengah $m_k = (\mu_1, \mu_2, ..., \mu_p)$, dengan matriks koragam Σ berpangkat p (simetris dan definit positif) beranggotakan σ_{ij}. Komponen utama ke-i yang dilambangkan dengan Y_i merupakan kombinasi linear dari p-peubah asal, yaitu:

$$Y_i = a_{1i}X_1 + a_{2i}X_2 + ... + a_{pi}X_p = \sum_{j=1}^{p} a_{ji}X_j = \beta_i^T X$$

(4)

Jika sebagian besar keragaman total populasi (dianjurkan $\geq 80\%$) telah dapat dijelaskan oleh q komponen utama pertama, maka
komponen-komponen ini dapat menggantikan p peubah asal tanpa banyak kehilangan informasi (Johnson, 1996). Bila X adalah matriks data berukuran (nxp) yang terkoreksi terhadap nilai tengahnya, maka model AKU dapat ditulis sebagai berikut,

$$X = Y_q A_q^T + Y_{q+1} A_{q+1}^T + ... + Y_m A_m^T + E$$

masing-masing matriks \hat{X} dan E merupakan matriks dugaan X dan matriks galat.

3. Bagan Kendali Analisis Komponen Utama

T^2 yang digunakan dalam bagan AKU didefinisikan sebagai jumlah kuadrat skor-skor KU yang telah dinormalkan dan akan tersusun seperti,

$$T_i = Y_q^T(Y_q^TY_q)^{-1}Y_i$$

dimana Y_i^T adalah baris ke-i dari matriks Y_q yaitu matriks dari q vektor skor KU. Matriks yang ada di dalam kurung merupakan matriks diagonal berunsur q akar ciri pertama dari matriks koragam X.

Karena keragaman yang diambil hanya sebagian dari total keragaman yang ada, maka sangat perlu untuk memonitor Q, yaitu besarnya keragaman yang tidak tertangkap oleh AKU (Hawkins 2001). Nilai Q_i ditetapkan sebagai,

$$Q_i = \varepsilon_i^T\varepsilon_i = X_i^T(I - A_q A_q^T)X_i$$

dimana ε_i^T adalah baris ke-i matriks E.

Kolom-kolom A_q adalah q vektor pembobot pertama pada model AKU, dan I adalah matriks identitas berukuran (p x p) (Gallagher et al. 1997).

4. Konsep tak terkendali (out of control)

Suatu grafik pengendali menunjukkan keadaan tak terkendali apabila satu atau beberapa titik jatuh diluar batas pengendali atau apabila titik-titik dalam grafik menunjukkan pola tingkah laku yang tidak random atau sistimatik (Montgomery, 1991).

Beberapa pola umum yang tampak pada grafik misalnya: Pola Siklis (grafik menggambarkan pola sirklis yang naik turun), Pola Campuran (titik-titik yang tergambar cenderung jatuh dekat atau diluar batas kendali), Trend (gerakan kontinu dalam satu arah), Stratifikasi (titik-titik seakan berkelompok disekitar garis tengali).

BAHAN DAN METODE

Bahan Penelitian

Bahan yang digunakan pada penelitian ini adalah data bangkitan. Data simulasi dibangkitkan dari data peubah normal ganda berdimensi 6, berupa data referensi dan data non referensi dengan pergeseran nilai tengah dan perubahan korelasi.
Metode Penelitian

Pembangkitan data simulasi
Langkah-langkah pembangkitan data dengan menggunakan program Matlab 5.3.1 adalah:
1. Bangkitkan data referensi dengan nilai \(\mu = 0 \) dan koragam yang ditentukan dari matriks korelasi, terdiri dari korelasi 0.2, 0.5 dan 0.8.
2. Bangkitkan data non referensi:
 - Akibat pergeseran nilai tengah pada peubah pertamanya, dibangkitkan dengan \(\mu_i = \{0.5, 1.0, 1.5, 2.0, 2.5, 3.0\} \) dan \(\mu_{3,e} = 0 \), dan koragam ditentukan dari matriks korelasi yang sama pada data referensi.
 - Akibat perubahan korelasi, dibangkitkan oleh nilai \(\mu = 0 \) dengan berbagai kemungkinan perubahan matriks korelasi yang dicobakan, seperti terlihat pada tabel 1.
3. Jumlah peubah (p) dan jumlah amatan (n) yang digunakan adalah p=6 dan n=100.

Analisis data

Analisis data terdiri atas tiga tahapan, yaitu tahap pengendalian awal, tahap pengendalian lanjutan dan tahap pembandingan.

Tabel 2. Kasus-kasus akibat perubahan korelasi antara peubah yang dicobakan

<table>
<thead>
<tr>
<th>Korelasi awal</th>
<th>Kasus</th>
<th>Perubahan korelasi</th>
<th>Korelasi akhir</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>(0.2 & 0.2) → (0.2 & 0.5)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>(0.2 & 0.2) → (0.5 & 0.2)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>(0.2 & 0.2) → (0.2 & 0.8)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>(0.2 & 0.2) → (0.8 & 0.2)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>(0.5 & 0.5) → (0.5 & 0.2)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>(0.5 & 0.5) → (0.2 & 0.5)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>(0.5 & 0.5) → (0.5 & 0.8)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>(0.5 & 0.5) → (0.8 & 0.5)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>(0.8 & 0.8) → (0.8 & 0.5)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>(0.8 & 0.8) → (0.5 & 0.8)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>(0.8 & 0.8) → (0.8 & 0.2)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>(0.8 & 0.8) → (0.2 & 0.8)</td>
<td></td>
</tr>
</tbody>
</table>

Keterangan:
- Kor I : korelasi antara peubah ke-1 sampai ke-3
- Kor II : korelasi peubah ke-4 sampai ke-6 terhadap peubah ke-1 sampai ke-6
Tahap pengendalian awal

Pengendalian awal dilakukan untuk memperoleh data referensi yang akan digunakan untuk menentukan nilai tengah, matriks koragam, dan KU-KU referensi serta batas pengendali dari masing-masing metode. Pada data bangkitan, data referensi diperoleh dari data yang dibangkitkan ketika proses dioperasikan di bawah kondisi terkendali. Batas pengendali dari masing-masing metode ditentukan melalui prosedur berikut:

a. Metode T^2 Hotelling

Hitung T^2 dari data referensi dengan persamaan (2), dan tentukan batas pengendali dengan persamaan (3).

b. Metode Analisis Komponen Utama

Batas pengendali pada indeks metode AKU ditetapkan dengan ketentuan bahwa jumlah amatan yang berada di luar batas pengendali hanya sebesar 1% dari seluruh amatan ketika proses dioperasikan dibawah kondisi terkendali.

Tahap pengendalian lanjutan

Pada tahapan ini dilakukan pengendalian terhadap data referensi dan non referensi. Kemudian hitung indeks dari setiap metode, yaitu persentase jumlah amatan yang berada di luar batas pengendali (terdeteksi oleh alat pengendali). Rata-rata persentase tersebut merupakan sebuah ukuran reliabilitas (keandalan) suatu indeks.

Tahap pembandingan

Kita membandingkan besarnya reliabilitas (%) indeks dari ketiga metode pada data simulasi.

HASIL DAN PEMBAHASAN

Hasil simulasi sebanyak 30 kali ulangan dengan berbagai kombinasinya yang dicobakan diperoleh 1080 gugus data. Pembandingan kedua metode Hotelling (HT), Analisis Komponen Utama (AKU) dilakukan dengan melihat reliabilitas (%) indeks pada kedua metode tersebut yang disajikan dalam bentuk tabel dan grafik.

Pengendalian awal

Tiga puluh gugus data bangkitan dalam kondisi terkendali dari korelasi 0.2 (rendah), 0.5 (sedang), dan 0.8 (tinggi) digunakan untuk menduga nilai tengah,
matriks koragam dan KU-KU referensi, serta batas pengendali.

Pengendalian lanjutan

Pada tabel 2 pengendalian dengan metode Hotelling (HT), indeks T^2 menunjukkan bahwa nilai reliabilitasnya semakin membesar seiring dengan semakin besarnya pergeseran nilai tengah. Hal ini memberi arti bahwa semakin besar pergeseran nilai tengah pada data maka indeks T^2 HT kemampuan mendeteksinya semakin besar. Untuk korelasi 0.2 (rendah) dan 0.5 (sedang) reliabilitasnya tidak lebih dari 50% pada pergeseran nilai tengah yang besar, yaitu pergeseran sebesar 2.5 dan 3.0. Untuk korelasi 0.8 (tinggi), pergeseran 2.5 dan 3.0 memberikan nilai reliabilitas mencapai lebih dari 99%. Artinya, hampir semua kondisi tak terkendali akibat pergeseran nilai tengah pada kasus tersebut dapat terdeteksi dengan sangat baik oleh HT.

Nilai reliabilitas akibat perubahan korelasi oleh metode HT ini juga disajikan pada tabel 2. Untuk korelasi 0.2 (rendah), pada kasus 1 yaitu perubahan korelasi dari korelasi (0.2 & 0.2) menjadi (0.2 & 0.5) hanya sebesar 2.4%, dan pada kasus 3 perubahan korelasi dari (0.2 & 0.2) menjadi (0.2 & 0.8) sebesar 3.1%. Untuk korelasi 0.5 (sedang), pada kasus 1 dan 3 yaitu perubahan korelasi dari (0.5 & 0.5) menjadi (0.5 & 0.2) dan menjadi (0.5 & 0.8) masing-masing sebesar 2.8% dan 3.6%. Sehingga untuk korelasi 0.2 (rendah) dan 0.5 (sedang) pada setiap kasus nilai reliabilitasnya tidak ada yang lebih dari 10%. Barulah pada korelasi 0.8 (tinggi) nilai reliabilitasnya dapat lebih dari 10%.

Tabel 3 merupakan hasil yang diperoleh oleh metode AKU dengan berbagai pemilihan banyaknya KU pertama. Untuk korelasi 0.2 (rendah) hasil terbaik pada setiap kasus diperoleh oleh indeks Q_1 atau monitoring statistik Q dengan menggunakan hanya satu KU pertama saja. Untuk korelasi 0.5 (sedang) diperoleh hasil terbaik pada saat 5 KU pertama digunakan, indeks T^2, dan nilai reliabilitas pada setiap kasus tidak ada yang lebih dari 60%. Untuk korelasi 0.8 (tinggi) diperoleh hasil terbaik pada saat 1 KU digunakan, yaitu indeks Q_1. Pada korelasi yang tinggi ini nilai reliabilitas pergeseran sebesar 2.5 dan 3.0, yaitu pergeseran nilai tengah yang besar mencapai lebih dari 95%.
Pada kasus-kasus akibat perubahan korelasi, sama halnya dengan metode HT, indeks-indeks metode AKU tidak begitu baik dalam pendeteksian.

Tabel 2. Reliabilitas (%) pada metode T^2 Hotelling

<table>
<thead>
<tr>
<th>Korelasi</th>
<th>T^2</th>
<th>T^2</th>
<th>Perubahan nilai tengah</th>
<th>Perubahan korelasi</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0.8</td>
<td>1.1</td>
<td>2.1</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>4.2</td>
<td>12.8</td>
<td>20.6</td>
<td>41.5</td>
</tr>
<tr>
<td></td>
<td>2.4</td>
<td>2.3</td>
<td>3.1</td>
<td>2.9</td>
</tr>
<tr>
<td>0.5</td>
<td>1.1</td>
<td>1.5</td>
<td>3.1</td>
<td>10.2</td>
</tr>
<tr>
<td></td>
<td>1.3</td>
<td>18.3</td>
<td>27.1</td>
<td>48.4</td>
</tr>
<tr>
<td></td>
<td>3.1</td>
<td>3.1</td>
<td>4.2</td>
<td>3.6</td>
</tr>
<tr>
<td>0.8</td>
<td>1.2</td>
<td>4.0</td>
<td>12.5</td>
<td>39.1</td>
</tr>
<tr>
<td></td>
<td>3.5</td>
<td>80.6</td>
<td>98.3</td>
<td>99.4</td>
</tr>
<tr>
<td></td>
<td>16.5</td>
<td>14.4</td>
<td>20.1</td>
<td>19.1</td>
</tr>
</tbody>
</table>

Tabel 3. Reliabilitas (%) pada metode AKU

<table>
<thead>
<tr>
<th>Korelasi</th>
<th>T^2</th>
<th>T^2</th>
<th>Perubahan nilai tengah</th>
<th>Perubahan korelasi</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0.8</td>
<td>1.5</td>
<td>1.6</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>3.5</td>
<td>4.5</td>
<td>7.5</td>
</tr>
<tr>
<td></td>
<td>2.9</td>
<td>2.5</td>
<td>3.8</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>1.2</td>
<td>2.5</td>
<td>5.2</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>11.0</td>
<td>20.1</td>
<td>27.4</td>
<td>46.3</td>
</tr>
<tr>
<td></td>
<td>4.9</td>
<td>4.6</td>
<td>5.5</td>
<td>5.2</td>
</tr>
<tr>
<td>0.5</td>
<td>1.2</td>
<td>1.5</td>
<td>3.3</td>
<td>12.5</td>
</tr>
<tr>
<td></td>
<td>15.0</td>
<td>23.0</td>
<td>37.5</td>
<td>4.8</td>
</tr>
<tr>
<td></td>
<td>4.4</td>
<td>4.4</td>
<td>5.1</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>2.5</td>
<td>3.4</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>6.5</td>
<td>7.5</td>
<td>1.5</td>
<td>1.6</td>
</tr>
<tr>
<td>0.8</td>
<td>1.1</td>
<td>1.0</td>
<td>1.0</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td>1.6</td>
<td>2.5</td>
<td>3.0</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td>0.9</td>
<td>0.9</td>
<td>2.5</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>2.5</td>
<td>3.3</td>
<td>7.3</td>
</tr>
<tr>
<td></td>
<td>11.5</td>
<td>21.5</td>
<td>45.5</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td>3.0</td>
<td>4.1</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>1.1</td>
<td>1.0</td>
<td>1.8</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td>4.8</td>
<td>4.8</td>
<td>8.5</td>
<td>25.6</td>
</tr>
<tr>
<td></td>
<td>1.9</td>
<td>1.5</td>
<td>2.5</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>0.9</td>
<td>2.6</td>
<td>6.3</td>
<td>11.6</td>
</tr>
<tr>
<td></td>
<td>19.5</td>
<td>38.5</td>
<td>54.2</td>
<td>4.1</td>
</tr>
<tr>
<td></td>
<td>3.5</td>
<td>4.4</td>
<td>3.4</td>
<td>3.4</td>
</tr>
<tr>
<td>0.5</td>
<td>1.0</td>
<td>1.0</td>
<td>1.8</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td>3.5</td>
<td>7.3</td>
<td>18.8</td>
<td>1.9</td>
</tr>
<tr>
<td></td>
<td>1.6</td>
<td>1.6</td>
<td>1.8</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td>1.1</td>
<td>4.8</td>
<td>10.5</td>
<td>36.0</td>
</tr>
<tr>
<td></td>
<td>79.2</td>
<td>96.5</td>
<td>99.6</td>
<td>15.9</td>
</tr>
<tr>
<td></td>
<td>14.3</td>
<td>14.3</td>
<td>18.1</td>
<td>16.4</td>
</tr>
<tr>
<td>0.8</td>
<td>0.8</td>
<td>1.8</td>
<td>7.5</td>
<td>20.1</td>
</tr>
<tr>
<td></td>
<td>61.5</td>
<td>81.5</td>
<td>96.5</td>
<td>6.7</td>
</tr>
<tr>
<td></td>
<td>8.5</td>
<td>14.8</td>
<td>13.3</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td>0.7</td>
<td>1.5</td>
<td>4.5</td>
<td>26.0</td>
</tr>
<tr>
<td></td>
<td>36.0</td>
<td>52.5</td>
<td>76.2</td>
<td>6.5</td>
</tr>
<tr>
<td></td>
<td>5.1</td>
<td>9.1</td>
<td>8.0</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>1.2</td>
<td>3.8</td>
<td>8.4</td>
<td>34.3</td>
</tr>
<tr>
<td></td>
<td>77.8</td>
<td>94.5</td>
<td>98.5</td>
<td>11.2</td>
</tr>
<tr>
<td></td>
<td>10.5</td>
<td>14.2</td>
<td>13.0</td>
<td>13.0</td>
</tr>
<tr>
<td>0.8</td>
<td>0.8</td>
<td>2.0</td>
<td>22.5</td>
<td>37.8</td>
</tr>
<tr>
<td></td>
<td>42.5</td>
<td>57.0</td>
<td>78.0</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>8.1</td>
<td>13.1</td>
<td>12.4</td>
<td>45</td>
</tr>
</tbody>
</table>

Pembandingan

Pergeseran nilai tengah

Grafik pembandingan reliabilitas (%) akibat pergeseran nilai tengah disajikan dalam gambar 1a sampai 1c. Terlihat pada gambar 1a sampai 1c, garis setiap indeks semakin meninggi bersamaan dengan semakin besarnya pergeseran nilai tengah data.

Gambar 1a adalah pembandingan untuk korelasi 0.2 (rendah). Terlihat dalam gambar bahwa garis T^2 HT lebih rendah dari
Qi AKU. Ini menunjukkan bahwa AKU sedikit lebih baik dibandingkan HT dalam mendeteksi pergeseran nilai tengah untuk korelasi rendah.

Gambar 1b memperlihatkan pembandingan kedua metode pada korelasi 0.5 (sedang), dimana garis T^2 HT dengan T^2_4 AKU dan T^2_3 AKU keduanya nyaris berhimpit. Gambaran memberikan arti bahwa HT dan AKU mulai sama baiknya.

Gambar 1c adalah pembandingan untuk korelasi 0.8 (tinggi). Terlihat garis T^2 HT dan T^2_3 AKU dan Qi AKU tepat berhimpit. Ini mengindikasikan bahwa kemampuan mendeteksi kondisi tidak terkendali pada HT dan AKU bertambah seiring dengan meningkatnya korelasi antara peubah proses.

Gambar 3a dan 3b menunjukan gambaran umum yang dapat diperoleh pada setiap pengolahan data simulasi korelasi 0.2 (rendah) pada kasus 1 yaitu kasus pergeseran nilai tengah sebesar 0.5 (kecil). Tampak dalam gambar sebuah titik terdeteksi oleh T^2 HT dan 2 buah titik terdeteksi oleh T^2_3 (5) AKU.

Perubahan korelasi

Gambar 2a sampai 2c menyajikan pembandingan reliabilitas (%) kedua metode pada kondisi tak terkendali akibat perubahan korelasi antara peubah proses. Gambar 2a untuk korelasi 0.2 (rendah) memperlihatkan bahwa garis T^2_3 AKU dan Qi AKU hampir berhimpit, sedangkan T^2 HT berada di bawah T^2_3 AKU dan Qi AKU. Ini menunjukkan bahwa AKU lebih baik dari HT pada korelasi 0.2 (rendah).

Gambar 2b untuk pembandingan korelasi 0.5 (sedang) terlihat kedua garis T^2_4 AKU dan T^2_5 AKU sedikit lebih tinggi dari T^2 HT untuk kasus 1 dan 2, tetapi berhimpit untuk kasus 3 dan 4.

Gambar 2c untuk pembandingan korelasi 0.8 (tinggi) garis T^2 HT lebih tinggi dari garis Qi AKU dan T^2_5 AKU. Pada korelasi ini HT sedikit lebih baik dari AKU.

Hasil-hasil yang telah disebutkan di atas, secara umum menunjukkan bahwa besarnya reliabilitas (%) akibat pergeseran nilai tengah akan semakin bertambah dengan semakin besaranya pergeseran, dan nilai reliabilitas dari T^2 HT, T^2 AKU dan Q AKU pada perubahan korelasi umumnya tidak lebih dari 20%.

Gambar 4a dan 4b adalah gambaran umum yang dapat diperoleh pada setiap olahan data simulasi untuk korelasi 0.2 (rendah), kasus 1, yaitu kasus perubahan korelasi dari (0.2 & 0.2) menjadi (0.2 & 0.5), perubahan korelasi yang kecil.
Gambar 1. Pergeseran nilai tengah untuk kedua metode. (a) korelasi 0.2, (b) korelasi 0.5, (c) korelasi 0.8

Gambar 2. Perubahan korelasi untuk kedua metode. (a) korelasi 0.2, (b) korelasi 0.5, (c) korelasi 0.8
Gambar 3. Monitoring pada korelasi 0.2, kasus 1, kondisi tak terkendali akibat pergeseran nilai tengah sebesar 0.5, (a) T^2 Hotelling dan (b) $T^2_{5\text{AKU}}$ & $Q_1\text{AKU}$.

Oki Dwipurwani
Pembandingan antara T^2 Hotelling dan ...
Gambar 4. Monitoring pada korelasi 0.2, kasus 1, kondisi tak terkendali akibat perubahan korelasi. (a) T^2 Hotelling dan (b) T^2, AKU & Q_l AKU
KESIMPULAN DAN SARAN

Kesimpulan
Secara umum kemampuan mendeteksi amatan tak terkendali akibat pergeseran nilai tengah dan perubahan korelasi pada data simulasi oleh metode T^2 Hotelling dan AKU sama baiknya, terlihat dari nilai reliabilitasnya, tetapi AKU mampu mereduksi jumlah peubah, terutama pada korelasi tinggi, sehingga membuat proses menjadi lebih sederhana.

Saran
Untuk pengendalian proses pada data yang memiliki korelasi tinggi antara peubahnya disarankan menggunakan AKU. Disarankan pula untuk memperhatikan terjadinya pola pada bagian kendali yang juga dapat menunjukkan proses yang tak terkendali.

DAFTAR PUSTAKA

