PREDIKSI SUHU ATMOSFIR BUMI BERDASARKAN
MODEL TRANSFER RADIASI TERMAL 1-DIMENSI

Akmal Johan
Jurusan Fisika FMIPA Universitas Sriwijaya

ABSTRAK
Terbentuknya profil distribusi vertikal suhu atmosfir bumi ingin dipahami secara teori melalui
model lapisan atmosfir dengan mekanisme transfer radiasi antar lapisan dimaksud. Hasil
perhitungan dengan menggunakan data nilai solar constant $S = 1370 \text{ W/m}^2$, albedo $\rho_a = 0.3$ serta
reflektivitas dan transmisivitas optik dari komponen gelombang pendek (SW) dan gelombang
panjang (LW) yang terukur, diperoleh kesesuaian kualitatif dengan pola profil suhu yang
diperoleh dari hasil pengukuran sebagaimana tercantum dalam literatur standar. Selain dari
pada itu, secara kuantitatif diperoleh kesesuaian dengan data hasil perhitungan perataan
horizontal model GCM (General Circulation Model), hingga ketinggian ~400 hPa (~7000 meter)
dari permukaan bumi. Model transfer radiasi ini juga memberi gambaran tentang profil suhu
untuk beberapa skenario menyangkut kondisi iklim global.

Kata Kunci : Model Transfer Radiasi Termal 1 Dimensi, GCM (General Circulation Model).

PENDAHULUAN

Diakini lebih kuat bahwa keberadaan gas rumah kaca merupakan faktor yang paling menentukan terjadinya
pemanasan global (global warming). Fenomena yang ditandai dengan meningkatnya suhu permukaan bumi ini
terjadi karena terperangkapnya radiasi termal yang diperoleh bumi dari sinar matahari, yang
dikenal dengan nama efek rumah kaca (greenhouse effect).

Beberapa gas seperti H$_2$O, CO$_2$, NO$_2$, CH$_4$, dan gas-gas sejenis CFC dianggap
memiliki potensi besar sebagai penyebab pemanasan global (Boeker & Grondale, 1995), baik karena konsentrasinya maupun
efeknya yang besar terhadap radiasi termal yang diterima permukaan bumi. Sesuai
dengan namanya gas-gas rumah kaca bersifat transparan terhadap radiasi gelombang
pendek namun mengabsorpsi sebagian besar radiasi gelombang panjang. Absorpsi yang
besar inilah yang menyebabkan radiasi termal yang dilepaskan permukaan bumi ke atmosfir
terhalang dan bahkan menyebabkan radiasi balik ke bumi, yang menyebabkan suhu permukaan bumi menjadi lebih besar.

Model interaksi langsung matahari–bumi (model 1-lapis permukaan) atau model interaksi dengan melibatkan 1 lapisan atmosfir (model 2 lapis permukaan) hanya mampu memprediksikan suhu permukaan bumi dan suhu atmosfir secara umum. Agar dapat memperkirakan distribusi suhu atmosfir dalam arah vertikal maka dikembangkan model (N+1) lapis permukaan, dengan N lapis (N>1) atmosfir. (Li et al, 1997; Ide. et.al, 2001).

TINJAUAN PUSTAKA

Tinjauan Umum

Matahari adalah salah satu benda langit yang memancarkan radiasinya sendiri dan dengan menganggap matahari sebagai benda hitam bersuhu 6000 K, maka radiasi termal yang terpancar terutama akan berada di sekitar gelombang cahaya ungu. Radiasi inilah yang merupakan sumber utama energi kehidupan di bumi, suatu planet di dalam sistem tata surya yang berjarak rata-rata 150 juta km dari matahari.

Jumlah radiasi yang dipancarkan suatu luas permukaan benda hitam bersu ​​hu T sesuai dengan hukum Stefan-Boltzmann dapat dituliskan sebagai

\[Q = \sigma T^4 \]

(1)
dengan \(\sigma \) adalah konstanta Boltzmann bernilai 5,67 x 10^-8 W m^-2 K^-4.

Pengukuran di permukaan bumi menghasilkan nilai rata-rata radiasi, yang dikenal sebagai Konstanta Matahari, S (Solar Constant) sebesar 1370 Wm^-2. Nilai ini masih lebih rendah 20% (Boeker & Grandale, 1995) dari hasil perhitungan teori jika tak ada radiasi yang hilang di sepanjang perjalanan.
Model 1-lapis permukaan

Model 1-lapis permukaan hanya melibatkan satu lapisan, permukaan bumi. Jika bumi dianggap sepenuhnya sebagai suatu penyerap radiasi maka radiasi yang diterima akan menyebabkan suhunya senantiasa meningkat. Akan tetapi dengan menganggap bumi juga sebagai suatu benda hitam maka radiasi diterima sebesar di atas akan dipancarkan kembali sebagai radiasi termal permukaan bumi. Dalam keadaan setimbang keadaan tersebut akan memenuhi persamaan

\[
S' = Q_E = \sigma T_E^4
\]

\[
S' = (1 - r) S / 4
\]

adalah jumlah radiasi matahari rata-rata yang diterima oleh suatu luas permukaan di bumi, \(r \) adalah konstanta reflektivitas atau albedo rata-rata permukaan bumi, model 1-lapis ini ditunjukkan pada Gambar 1,

Gambar 1. Model 1-Lapis permukaan

Persamaan (2) akan memberikan informasi tentang suhu permukaan bumi \(T_E \) untuk model 1-lapis permukaan, yang jika dipakai nilai rata-rata albedo \(r = 0.3 \) akan menghasilkan suhu bumi sebesar 255 K atau \(-18^\circ\text{C}\). Nilai ini merupakan suhu (rata-rata) terendah permukaan bumi tanpa pengaruh gas rumah kaca pada atmosfirnya. Ini masih jauh lebih rendah dari suhu hasil pengukuran yang rata-rata berkisar 288 K atau 15\(^\circ\text{C}\).

Model 2-lapis permukaan

\[
S' = (1-\alpha)S/4
\]

\[
Q_A = \sigma T_A^4
\]

Gambar 2. Model 2-lapis permukaan

Prediksi Suhu Atmosfir Bumi
Total radiasi S' yang diterima di permukaan bumi, dalam keadaan setimbang, dipancarkan kembali sebagai radiasi termal permukaan bumi, $Q_e = \sigma T_e^4$ sebagai radiasi gelombang pendek sinar matahari tidak mengalami absorpsi berarti oleh gas-gas rumah kaca yang terutama ditentukan oleh uap air (H$_2$O) dan karbon dioksida (CO$_2$). Sifat gas CO$_2$ dan H$_2$O sebagai gas rumah kaca diperlihatkan pada Gambar 3. Jika hampir seluruh radiasi gelombang pendek ditransmisikan, radiasi gelombang panjang yang dipancarkan oleh bumi hampir seluruhnya diabsorpsikan dan dipancarkan kembali dalam bentuk radiasi termal lapisan atmosfir yang separuhnya diterima kembali oleh permukaan bumi.

Gambar 3. Absorpsivitas gas H$_2$O dan CO$_2$ masing-masing untuk radiasi gelombang pendek dan radiasi gelombang panjang (Sumber : Levi, 1993)
Berangkat dari ilustrasi dan penjelasan di atas maka persamaan yang menyatakan kesetimbangan energi dapat dinyatakan sebagai

$$S' + Q_A = Q_E$$ \(\text{(3)} \)

dan

$$(1 - t) Q_E = 2Q_A$$ \(\text{(4)} \)

yang masing-masing berlaku untuk lapisan-1 (permukaan bumi) dan lapisan-2 (atmosfir). $Q_A = \sigma T_A^4$ adalah radiasi termal dari lapisan atmosfir. Konstanta t di atas menyatakan nilai koefisien transmisi lapisan atmosfir.

Distribusi energi dan suhu

Dengan menggunakan persamaan (3) dan (4) akan diperoleh distribusi energi radiasi yang dipancarkan oleh masing-masing permukaan bumi dan lapisan atmosfir di atas sebagai

$$Q_E = \left[\frac{2}{(1+t)} \right] S'$$ \(\text{(5a)} \)
dan

$$Q_A = \left[\frac{(1-t)/(1+t)} \right] S'$$ \(\text{(5b)} \)

serta distribusi suhu untuk kedua lapisan tersebut, masing-masing

$$T_E = \left[\frac{(1-r)S'/2(1+t)\sigma}{1/4} \right]$$ \(\text{(6a)} \)
dan

$$T_A = \left[\frac{(1-t)/2}{1/4} \right] T_E = \left[\frac{(1-t)(1-r)S'/4(1+t)\sigma}{1/4} \right]$$ \(\text{(6b)} \)

Perhatikan bahwa persamaan (5) akan sama dengan persamaan (2) jika $t = 1$, yang dalam hal ini berarti bahwa seluruh radiasi termal bumi diteruskan—tanpa absorpsi oleh lapisan atmosfir. Jika $t = 0$, yaitu keadaan dimana seluruh radiasi termal bumi diabsorpsi oleh lapisan atmosfir, maka, dengan tetap mengambil nilai $r = 0.3$, akan diperoleh suhu permukaan bumi sebesar 303 K (30°C). Nilai ini mencerminkan nilai suhu maksimum permukaan bumi yang dapat diprediksi oleh model 2-lapis permukaan.

Persamaan (5) masih memberi peluang untuk menjelaskan ‘tentang suhu ‘real’ permukaan bumi, 288 K. Nilai ini diperoleh jika dipilih nilai $t = 0.78$. Namun demikian prediksi tentang nilai suhu maksimum di atas menjadi satu pertanda dari kelemahan utama model ini, karena pada kenyataannya suhu permukaan suatu planet dapat jauh di atas nilai tersebut, seperti yang ditunjukkan oleh suhu permukaan planet Venus (753 K) yang secara geometrik sistem tatasurya tak terlalu berbeda dengan bumi (Luigens & Tarbuck, 1992).

Model (N+1) Lapis Permukaan

Model transfer radiasi termal untuk lebih dari 1 lapis atmosfir telah dikenal dan

Sketsa sederhana dari model (N+1) lapis permukaan dari Ide et al. dinyatakan seperti pada gambar 4. Berbeda dengan 2 buah model yang dibahas sebelumnya, pada model ini radiasi gelombang pendek (SW) juga mengalami refleksi, absorpsi dan transmisi pada setiap lapisan atmosfir seperti halnya pada radiasi gelombang panjang (LW). Dalam hal ini makna dan nilai transmisivitas dan refleksivitas pada umumnya berbeda untuk masing-masing jenis radiasi dan pada tiap lapis/ permukaan.
Aliran Gelombang pendek (SW)

\[
U_n = \rho_n D_n + r_n U_{n-1} \quad F_n = 0 + t_n F_{n-1} + r_n Q_n
\]

\[
D_n = S/4 \quad I_n = 0 + 0 + 0
\]

\[
(U_n, \rho_n, t_n)
\]

Aliran Gelombang panjang (LW)

\[
U_{n+1} = \rho_{n+1} D_{n+1} + \tau_{n+1} U_{n+2} \quad F_{n+1} = 0 + t_{n+1} F_{n+2} + r_{n+1} Q_{n+1}
\]

\[
D_{n+1} = \tau_n D_n + \rho_n U_{n+1} \quad I_{n+1} = \tau_n I_{n+1} + 0 + r_{n+1} Q_{n+1}
\]

\[
(U_{n+1}, \rho_{n+1}, \tau_{n+1}, t_{n+1}, r_{n+1})
\]

Gambar 4. Skema diagram model (n+1)-Lapisan
Sesuai dengan perbedaan karakter kedua jenis radiasi di atas, analisis transfer radiasi dilakukan secara terpisah. Jika D_i dan U_i masing-masing menyatakan flukus energi turun dan naik dari radiasi SW pada tingkat ke-i, dapat dinyatakan hubungan rekursif

$$
U_i = \rho_i D_i + \tau_i U_{i-1}
$$
$$
D_{i+1} = \tau_i D_i + \rho_i U_{i-1}
$$
(7)

dengan ρ_i dan τ_i masing-masing menyatakan refleksivitas dan transmisivitas SW lapisan ke-i. Persamaan (7) di atas secara fisi juga harus memenuhi syarat batas

$$
U_o = \rho_o D_o
$$
$$
D_o = S/4
$$
(8)

D_n merupakan flukus radiasi SW pada tingkat atmosfir tertinggi, yang sekaligus sebagai sumber radiasi SW, dimana S (solar constan) = 1370 W/m2. Dari persamaan (7) kita dapat menyatakan flukus radiasi SW netto pada tingkat ke-i sebagai

$$
A_i = D_i - U_i
$$
(9)

Di sisi lain, radiasi LW yang melewati tingkat ke-i juga dapat dipisahkan atas masing-masing flukus berarah ke atas F_i dan ke bawah I_i yang memenuhi hubungan rekursif identik dengan persamaan (7)

$$
F_i = t_i F_{i-1} + r_i Q_i
$$
$$
I_i = t_{i-1} I_{i-1} + r_{i-1} Q_{i-1}
$$
(10)
dengan t_i dan r_i masing-masing menyatakan transmisivitas dan refleksivitas LW pada lapisan ke-i. Dalam hal ini syarat batas fisis yang harus dipenuhi adalah

$$
I_o = 0
$$
$$
F_o = r_o Q_o
$$
(11)

$Q_o = \sigma T_o^4$ adalah radiasi termal (LW) yang dipancarkan permukaan bumi. (T_o suhu permukaan bumi), yang sekaligus berperan sebagai sumber radiasi LW. Dalam kasus ini r_o sering disebut juga sebagai emisivitas tanah. Persamaan (10) juga akan menghasilkan pernyataan untuk flukus radiasi LW netto yang melewati tingkat ke-i

$$
W_i = F_i + I_i
$$
(12)

Prinsip kesetimbangan flukus radiasi dapat dinyatakan dalam hubungannya dengan keadaan pada tingkat ke-i sebagai

$$
A_i = W_i
$$
(13)

Atau flukus netto pada lapisan ke-i yang dinyatakan sebagai

$$
E_i = H_i
$$
(14)
dimana

$$
E_i = A_i - A_{i-1} = \gamma_i (D_i + U_{i+1})
$$
(15a)
dan

$$
H_i = W_i - W_{i-1}
$$
$$
= (1 - t_i)(I_i + F_{i+1}) - 2 r_i Q_i
$$
(15b)
dengan: \(\gamma_i = 1 - \tau_i - \rho_i \) dikenal sebagai ekstinsi (extinction).

Persamaan (13) atau (14) memberikan hubungan antara radiasi LW dari lapisan ke-\(i \), \(Q_n \), yang juga tersimpan didalam \(F_i \) dan \(I_i \), dengan pasangan radiasi SW, \(D_i \) dan \(U_i \). Dengan memanfaatkan persamaan-persamaan rekursi (7) dan (10) \(Q_i \) dapat dinyatakan sebagai suatu persamaan matriks
\[
\bar{Q} = L(\tau, r) \bar{E}(\tau, \rho, \rho_o, S)
\]
yang mana, dapat ditunjukkan (Ide et al, 2001), bahwa \(L \) adalah matriks berurutan \((n+1)x(n+1)\) dengan elemen-elemen;

\[
L_{ij} = \begin{cases}
\frac{1}{b_i} \left(\frac{1}{1 + t_i} + \sum_{l=i+1}^{n2i+1} \frac{1 + t_l}{1 - t_l} \right) & i > j \\
\frac{1}{b_i} \left(\frac{1}{1 - t_i^2} + \sum_{l=i+1}^{n2i+1} \frac{1 - t_l}{1 + t_l} \right) & i = j \\
\frac{1}{b_i} \left(\frac{1}{1 + t_j} + \sum_{l=j+1}^{n2j+1} \frac{1 - t_l}{1 + t_l} \right) & i < j
\end{cases}
\]

(17)

dengan mengetahui \(\bar{Q} \) maka dapat ditentukan distribusi suhu vertikal yang melibatkan suhu tiap lapisan sebagai
\[
T_i = \left(\frac{Q_i}{\sigma} \right)^{1/4}
\]
i = 0, 1, 2, \ldots , n

METODOLOGI
Metode Penelitian

Data Input

Sebagaimana diketahui bahwa tujuan penelitian ini adalah untuk menentukan suhu tiap lapisan (permukaan bumi dan lapisan-lapisan atmosfir diatasnya). Seperti dinyatakan pada persamaan (18). Untuk mendapatkan informasi tersebut maka dibutuhkan data berkaitan dengan parameter optik : \(\bar{t}, \bar{r}, \bar{\tau}, \bar{\rho}, \) serta \(\rho_o \) dan \(S \). Data dimaksud diambil dari hasil perhitungan Laboratorium Dinamika Meteorologi (Laboratoire de Meteorologie Dynamique - LMD) Perancis, berdasarkan model sirkulasi umum (General Circulation Model – GCM) untuk 11-lapisan (Li, at.al., 1997) sebagai mana dinyatakan pada Tabel 1.
Tabel 1. Data parameter optik model 11-lapisan dari LMD’s GCM, (Sumber : Li et al., 1997)

<table>
<thead>
<tr>
<th>Lapisan</th>
<th>Gelombang pendek (SW)</th>
<th>Gelombang panjang (LW)</th>
<th>Extinction</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>τ</td>
<td>ρ</td>
<td>T</td>
</tr>
<tr>
<td>11</td>
<td>(15)</td>
<td>0,9720</td>
<td>0,0054</td>
</tr>
<tr>
<td>10</td>
<td>(73)</td>
<td>0,9897</td>
<td>0,0053</td>
</tr>
<tr>
<td>9</td>
<td>(152)</td>
<td>0,9874</td>
<td>0,0078</td>
</tr>
<tr>
<td>8</td>
<td>(274)</td>
<td>0,9773</td>
<td>0,0113</td>
</tr>
<tr>
<td>7</td>
<td>(416)</td>
<td>0,9587</td>
<td>0,0151</td>
</tr>
<tr>
<td>6</td>
<td>(573)</td>
<td>0,9522</td>
<td>0,0161</td>
</tr>
<tr>
<td>5</td>
<td>(718)</td>
<td>0,9572</td>
<td>0,0143</td>
</tr>
<tr>
<td>4</td>
<td>(841)</td>
<td>0,9635</td>
<td>0,0113</td>
</tr>
<tr>
<td>3</td>
<td>(926)</td>
<td>0,9754</td>
<td>0,0072</td>
</tr>
<tr>
<td>2</td>
<td>(980)</td>
<td>0,9868</td>
<td>0,0038</td>
</tr>
<tr>
<td>1</td>
<td>(1004)</td>
<td>0,9930</td>
<td>0,0020</td>
</tr>
</tbody>
</table>

Perhitungan dan Analisis

Dari data pada Tabel 1, selanjutnya akan ditentukan matriks L. Sebagaimana dinyatakan pada persamaan (17), dan dengan menggunakan persamaan (16) akan diketahui profil vertikal energi radiasi termal tiap lapisan \bar{Q}. Penentuan profil vertikal suhu lapisan akan dilakukan sesuai dengan persamaan (18), yang hasilnya akan dibandingkan dengan hasil perhitungan yang telah dilakukan oleh Li et al (1997).

Untuk keperluan analisis hasil perhitungan dan pengukuran dilakukan dengan menggunakan beberapa skenario berdasarkan nilai albedo permukaan bumi. Untuk itu akan digunakan dua skenario utama;

a. Skenario pertama dengan asumsi bahwa seluruh permukaan bumi tertutup es. Dalam hal ini dipakai nilai albedo $\rho_o = 0,9$.

b. Skenario kedua sesuai dengan kondisi rata-rata permukaan bumi sekarang, dipakai $\rho_o = 0,3$.

dan perbandingannya dengan hasil perhitungan model GCM berdasarkan perata-
rataan horizontal nilai profil suhu hasil pengukuran.

Data Standar Atmosfir

Untuk menyatakan kesesuaian antara hasil perhitungan model ini dengan kenyataan di lapangan maka diperlukan data pembanding. Untuk keperluan ini digunakan data atmosfir standar yang diperoleh berdasarkan sample hasil pengukuran melalui berbagai teknik dan metoda yang telah dikenal di bidang meteorologi.

Tabel 2 di bawah ini menjelaskan data atmosfir standar, sebagaimana ditemui pada banyak literatur, dapat dipakai sebagai pembanding terhadap data yang akan dihitung kemudian.

Tabel 2. Data standar atmosfir

<table>
<thead>
<tr>
<th>Height (m)</th>
<th>Temperatur T (°C)</th>
<th>Tekanan H (hPa)</th>
<th>Densitas ρ (kg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>15,0</td>
<td>1,013</td>
<td>1,23</td>
</tr>
<tr>
<td>1,000</td>
<td>8,5</td>
<td>899</td>
<td>1,11</td>
</tr>
<tr>
<td>2,000</td>
<td>2,0</td>
<td>795</td>
<td>1,01</td>
</tr>
<tr>
<td>3,000</td>
<td>-4,5</td>
<td>701</td>
<td>0,99</td>
</tr>
<tr>
<td>4,000</td>
<td>-11,0</td>
<td>617</td>
<td>0,82</td>
</tr>
<tr>
<td>5,000</td>
<td>-17,5</td>
<td>541</td>
<td>0,74</td>
</tr>
</tbody>
</table>

6,000 -24,0 472 0,66
7,000 -30,5 411 0,59
8,000 -36,9 357 0,53
9,000 -43,4 308 0,47
10,000 -50,0 265 0,41
11,000 -56,4 227 0,36
12,000 -56,5 194 0,31
13,000 -56,5 166 0,27
14,000 -56,5 142 0,23
15,000 -56,5 121 0,20
16,000 -56,5 104 0,17
17,000 -56,5 89 0,14

HASIL DAN PEMBAHASAN

Sebagaimana telah dikemukakan di muka, tujuan utama penelitian ini adalah untuk menentukan profil suhu permukaan dan atmosfir bumi, Tₕ, (lihat persamaan (18)). Nilai suhu ini pada awalnya diperoleh dari nilai radiasi gelombang LW tiap lapisan, Qₛ, sebagaimana dinyatakan pada persamaan (16). Dari persamaan (16) dapat dilihat bahwa perhitungan Qₛ secara matriks membutuhkan terlebih dahulu nilai-nilai elemen matriks L dan vektor flux radiasi netto gelombang SW, E.
Elemen matriks L.

Elemen-elemen matriks L mewakili sifat gelombang LW. Nilai elemen-elemen ini ditentukan melalui persamaan (17) yang melibatkan parameter sifat optik t dan r. Hasil perhitungan komputasi dari persamaan (17), memberikan nilai yang sesuai dengan yang diperoleh Ide, dkk (Ide et al., 2001), seperti tertera pada Tabel 3 kolom-kolom bagian tengah.

Tabel 3. Elemen matriks L dan vektor E.

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2,36</td>
<td>1,82</td>
<td>1,73</td>
<td>1,56</td>
<td>1,34</td>
<td>1,11</td>
<td>0,90</td>
<td>0,72</td>
<td>0,60</td>
<td>0,54</td>
<td>0,52</td>
<td>0,51</td>
</tr>
<tr>
<td>1</td>
<td>1,82</td>
<td>5,47</td>
<td>1,73</td>
<td>1,56</td>
<td>1,34</td>
<td>1,11</td>
<td>0,90</td>
<td>0,72</td>
<td>0,60</td>
<td>0,54</td>
<td>0,52</td>
<td>0,51</td>
</tr>
<tr>
<td>2</td>
<td>1,73</td>
<td>1,73</td>
<td>3,67</td>
<td>1,56</td>
<td>1,34</td>
<td>1,11</td>
<td>0,90</td>
<td>0,72</td>
<td>0,60</td>
<td>0,54</td>
<td>0,52</td>
<td>0,51</td>
</tr>
<tr>
<td>3</td>
<td>1,56</td>
<td>1,34</td>
<td>1,56</td>
<td>2,72</td>
<td>1,34</td>
<td>1,11</td>
<td>0,90</td>
<td>0,72</td>
<td>0,60</td>
<td>0,54</td>
<td>0,52</td>
<td>0,51</td>
</tr>
<tr>
<td>4</td>
<td>1,34</td>
<td>3,43</td>
<td>1,34</td>
<td>1,34</td>
<td>2,33</td>
<td>1,11</td>
<td>0,90</td>
<td>0,72</td>
<td>0,60</td>
<td>0,54</td>
<td>0,52</td>
<td>0,51</td>
</tr>
<tr>
<td>5</td>
<td>1,11</td>
<td>1,11</td>
<td>1,11</td>
<td>1,11</td>
<td>2,21</td>
<td>1,11</td>
<td>0,90</td>
<td>0,72</td>
<td>0,60</td>
<td>0,54</td>
<td>0,52</td>
<td>0,51</td>
</tr>
<tr>
<td>6</td>
<td>0,90</td>
<td>0,90</td>
<td>0,90</td>
<td>0,90</td>
<td>0,90</td>
<td>2,08</td>
<td>0,72</td>
<td>0,60</td>
<td>0,54</td>
<td>0,52</td>
<td>0,51</td>
<td>12,31</td>
</tr>
<tr>
<td>7</td>
<td>0,72</td>
<td>0,72</td>
<td>0,72</td>
<td>0,72</td>
<td>0,72</td>
<td>0,72</td>
<td>2,25</td>
<td>0,60</td>
<td>0,54</td>
<td>0,52</td>
<td>0,51</td>
<td>10,52</td>
</tr>
<tr>
<td>8</td>
<td>0,60</td>
<td>0,60</td>
<td>0,60</td>
<td>0,60</td>
<td>0,60</td>
<td>0,60</td>
<td>0,60</td>
<td>3,59</td>
<td>0,54</td>
<td>0,52</td>
<td>0,51</td>
<td>4,67</td>
</tr>
<tr>
<td>9</td>
<td>0,54</td>
<td>0,54</td>
<td>0,54</td>
<td>0,54</td>
<td>0,54</td>
<td>0,54</td>
<td>0,54</td>
<td>0,54</td>
<td>10,01</td>
<td>0,52</td>
<td>0,51</td>
<td>2,00</td>
</tr>
<tr>
<td>10</td>
<td>0,52</td>
<td>0,52</td>
<td>0,52</td>
<td>0,52</td>
<td>0,52</td>
<td>0,52</td>
<td>0,52</td>
<td>0,52</td>
<td>21,55</td>
<td>0,51</td>
<td>2,12</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0,51</td>
<td>0,51</td>
<td>0,51</td>
<td>0,51</td>
<td>0,51</td>
<td>0,51</td>
<td>0,51</td>
<td>0,51</td>
<td>0,51</td>
<td>13,77</td>
<td>9,72</td>
<td></td>
</tr>
</tbody>
</table>

Sesuai dengan bentuk persamaan (17), Tabel 3 memperlihatkan bahwa matriks L berbentuk matriks simetrik bujur sangkar dengan ukuran (n+1) x (n+1), di mana n = 11. Dapat diperlihatkan pula bahwa elemen diagonalnya memiliki nilai relatif jauh lebih besar dibandingkan dengan elemen lainnya. Hal ini menandakan adanya pengaruh lebih dominan dari sifat-sifat optik atmosfir pada lapisan terkait, terhadap nilai radiasi (termal) gelombang LW, Q,, dari lapisan dimaksud.

Elemen vektor E

Nilai-nilai flux radiasi netto dari gelombang SW, yang tersimpan di dalam vektor E, diperoleh dari persamaan (15a), dengan dukungan hasil perhitungan dari persamaan (9), (7), dan (8) yang melibatkan parameter-parameter sifat optik τ, ρ, albedo ρ₀, dan solar constant S. Perhitungan secara numerik menghasilkan nilai E seperti diperlihatkan pada kolom paling kanan dari Tabel 3.
Tabel 3 memperlihatkan bahwa nilai \(E \) berubah dalam pola naik dan turun yang berhubungan selaras dengan perubahan nilai reflektivitas antar muka dari lapisan atmosfir terkait. Hal ini masuk akal mengingat bahwa flux radiasi pada dasarnya merupakan realisasi dari gabungan kemampuan suatu media untuk menolak (refleksi), menyimpan (absorbsi), dan melewatkan (transmisii) suatu gelombang. Dalam keadaan setimbang karena energi hasil absorbsi gelombang SW kelak akan berubah menjadi radiasi (termal) \(Q \) dari gelombang LW, maka pada komponen gelombang SW ini flux radiasi netto \(E \) hanya ditentukan oleh reflektivitas dan/atau transmisivitas media.

Satu hal yang juga menarik adalah pada relatif besarnya nilai \(E \) pada antar muka ke-0. Agaknya hal ini disebabkan oleh adanya perbedaan kontras sifat lapisan, dalam hal ini antara permukaan bumi dengan lapisan atmosfir di atasnya. Sementara itu adanya nilai ekstrimum pada antarmuka ke-8, walaupun hal ini berhubungan dengan nilai ekstrimum reflektivitas maupun transmisivitas antarmuka lapisan, namun alasan lebih rasionalnya harus dilihat dari aspek atau mekanisme fisik yang terjadi di atmosfir terkait.

Elemen vektor \(Q \) dan \(T \)

Radiasi termal yang terkait dengan komponen gelombang LW dinyatakan melalui parameter \(Q \). Nilai-nilai elemen \(Q \) diperoleh dari hasil perhitungan persamaan (16). Selanjutnya, nilai-nilai suhu tiap lapisan \(T \) ditentukan berdasarkan persamaan (18). Kedua jenis nilai di atas, \(Q \) dan \(T \), dinyatakan pada Tabel 4 berikut. Tabel 4 juga menyertakan informasi tentang ketinggian (\(H \)) yang dinyatakan melalui tekanan atmosfir pada posisi itu (lihat kembali Tabel 1 dan Tabel 2 pada Metodologi).

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H), (hPa)</td>
<td>1004</td>
<td>980</td>
<td>926</td>
<td>841</td>
<td>718</td>
<td>573</td>
<td>416</td>
<td>274</td>
<td>152</td>
<td>73</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Q), (W/m(^2))</td>
<td>504,8</td>
<td>412,8</td>
<td>394,8</td>
<td>364,2</td>
<td>322,8</td>
<td>278,9</td>
<td>236,7</td>
<td>197,2</td>
<td>166,3</td>
<td>158,0</td>
<td>178,9</td>
<td>259,4</td>
<td></td>
</tr>
<tr>
<td>(T), ((^{\circ})C)</td>
<td>303</td>
<td>286</td>
<td>285</td>
<td>281</td>
<td>276</td>
<td>268</td>
<td>257</td>
<td>242</td>
<td>222</td>
<td>205</td>
<td>204</td>
<td>223</td>
<td></td>
</tr>
</tbody>
</table>
Grafik hubungan antara suhu dengan ketinggian, seperti tertera pada Tabel 4, dinyatakan pada Gambar 5. terlihat suatu pola penurunan suhu terhadap ketinggian hingga pada lapisan ke-10 dan 11, yaitu pada ketinggian sekitar 287 hPa (~ 11.000 m). Penurunan suhu ini sesuai dengan gambaran profil suhu dari hasil pengamatan pada lapisan troposfir seperti yang diperlihatkan pada banyak rujukan (Riehl, 1978; Lutgens & Tarbuck, 1992; Boeker & Grondale, 1995).

Gambar 5. Profil suhu permukaan dan atmosfir bumi

5.4 Profil suhu berdasar skenario dan metoda berbeda.

Profil suhu seperti yang dinyatakan pada Gambar 5 dihasilkan dari data albedo permukaan bumi rata-rata $\rho_0 = 0.3$, nilai perkiraan yang sesuai untuk kondisi saat ini. Untuk mengetahui bagaimana gambaran profil suhu pada kondisi lainnya dapat dipakai skenario dengan nilai ρ_0 yang berbeda. Sebagai contoh pada kondisi di mana seluruh permukaan bumi tertutup es dapat dipakai nilai $\rho_0 = 0.9$, atau kondisi antara keduanya, misalnya pada $\rho_0 = 0.55$. Sementara itu ada pendekatan atau metoda lain di dalam upaya mendapatkan profil suhu permukaan dan atmosfir bumi, salah satunya
Grafik hubungan antara suhu dengan ketinggian, seperti tertera pada Tabel 4, dinyatakan pada Gambar 5. terlihat suatu pola penurunan suhu terhadap ketinggian hingga pada lapisan ke-10 dan 11, yaitu pada ketinggian sekitar 287 hPa (~ 11.000 m). Penurunan suhu ini sesuai dengan gambaran profil suhu dari hasil pengamatan pada lapisan troposfir seperti yang diperlihatkan pada banyak rujukan (Riehl, 1978; Lutgens & Tarbuck, 1992; Boeker & Grondale, 1995).

5.4 Profil suhu berdasar skenario dan metoda berbeda.

Profil suhu seperti yang dinyatakan pada Gambar 5 dihasilkan dari data albedo permukaan bumi rata-rata $\rho_0 = 0.3$, nilai perkiraan yang sesuai untuk kondisi saat ini. Untuk mengetahui bagaimana gambaran profil suhu pada kondisi lainnya dapat dipakai skenario dengan nilai ρ_0 yang berbeda. Sebagai contoh pada kondisi di mana seluruh permukaan bumi tertutup es dapat dipakai nilai $\rho_0 = 0.9$, atau kondisi antara kedua, misalnya pada $\rho_0 = 0.55$. Sementara itu ada pendekatan atau metoda lain di dalam upaya mendapatkan profil suhu permukaan dan atmosfir bumi, salah satunya

* Akmal Johan

Prediksi Suhu Atmosfir Bumi ...
dikembangkan dari Model Sirkulasi Umum (General Circulation Model / GCM).

Gambaran profil suhu yang dihasilkan dari skenario dengan tingkat albedo \(p_0 = 0.3, 0.55 \) dan 0.9 serta metoda perataan nilai horizontal berdasarkan model GCM diperlihatkan pada Gambar 6.

![Diagram](image)

Gambar 6. Hubungan antara ketinggian dan suhu untuk model dengan nilai \(p_0 = 0.3 \) (a), \(p_0 = 0.9 \) (b), dan \(p_0 = 0.55 \) (c), serta metoda perataan nilai horizontal dari GCM.

Berdasarkan Gambar 6 dapat diperlihatkan kesesuaian yang baik antara hasil perhitungan model ini dengan metoda perataan GCM secara kualitatip untuk seluruh bagian kurva namun secara kuantitatip hanya cocok untuk posisi hingga ketinggian 400 hPa. Sementara itu perhitungan GCM memberikan kesesuaian yang lebih baik dibandingkan dengan hasil kajian literatur standar. Dengan demikian diperlukan perbaikan terhadap kemampuan prediksi model ini untuk ketinggian lebih dari 400 hPa tersebut di atas.

Kesesuaian di atas mengindikasikan bahwa sampai dengan ketinggian dimaksud mekanisme fisis di atmosfir relatif didominasi oleh proses radiasi, baik dari gelombang SW yang bersumber langsung dari matahari maupun dari gelombang LW yang lebih merupakan radiasi (termal) baik dari permukaan bumi. Agaknya ada proses atau mekanisme lain yang terjadi pada ketinggian di atas nilai 400 hPa, walaupun pola kualitatip dari kurva yang dihasilkan dari perhitungan relatif tak berbeda dengan yang dihasilkan dari proses radiasi.

KESIMPULAN DAN SARAN

Kesimpulan

Dari kajian sebagaimana telah dikemukakan di depan dapat diambil beberapa kesimpulan berikut:

1. Proses transfer radiasi di dalam atmosfir memegang peran penting dalam kaitannya dengan pola iklim dunia. Secara rata-rata, walaupun analisisnya
bersifat statik namun tetap dapat dipakai guna menjelaskan keadaan iklim global berdasarkan data sifat optik atmosfir dan meteorologis yang terkamat saat ini.

2. Ada kesesuaian kualitif antara profil suhu terhadap ketinggian yang diperoleh dari model ini dengan hasil kajian pada literatur standar, namun secara kuantitatif nilai-nilai suhu yang ditunjukkan dari hasil perhitungan dengan model ini umumnya di bawah nilai literatur standar dimaksud.

3. Model transfer radiasi ini pada dasarnya adalah model teori yang dalam banyak hal telah memperlihatkan kemampuan prediksinya secara analitik seperti pada perumusan dan penentuan sifat matriks L, nonlinearitas medium yang memunculkan solusi bimodal terhadap sifat-sifat optik atmosfir, dan munculnya kondisi ketetimbangan termodinamik yang dapat dicapai.

Saran
Sifatnya yang statis dan global menyebabkan model ini tak dapat digunakan untuk kebutuhan analisis dinamik dalam jangka pendek dan dalam lingkup lokal, seperti halnya pada upaya prakiraan cuaca. Untuk hal yang terakhir ini perlu dikembangkan model yang menyertakan juga proses konveksi di dalam atmosfir, baik yang bersifat vertikal maupun horizontal. Namun demikian dalam perhitungan rata-rata posisi dan waktu, proses konveksi tetap dapat diharapkan memperbaiki hasil perhitungan model ini untuk lebih mendekatkan nilai yang diperoleh secara kuantitatif dengan nilai yang ditunjukkan oleh metoda GCM dan referensi standar.

Dilihat dari keperluan pemahaman mekanisme efek rumah kaca dan prediksi terjadinya pemanasan global, perlu diteliti hubungan antara nilai besaran optik atmosfir dengan dinamika konsentrasi dan distribusi dari berbagai jenis gas rumah kaca yang dapat diukur di lapangan. Hal ini sangat membantu di dalam upaya menentukan kebijakan politis guna menghindarkan kerusakan lingkungan dari akibat gas rumah kaca yang berlebihan.

DAFTAR PUSTAKA

