PERUMUSAN KESALAHAN PEMOTONGAN METODE ADAM MOULTON PADA PENYELESAIAN MASALAH NILAI AWAL

Erwin
Jurusan Matematika FMIPA Universitas Sriwijaya

ABSTRAK

Penelitian ini bertujuan mencari kesalahan pemotongan metode Adam Moulton pada penyelesaian masalah nilai awal. Dengan menggunakan perluasan deret Taylor diperoleh besar kesalahan pemotongan prediktor metode Adam Moulton adalah \(\frac{251}{720} h^3 f''(\xi) \) dan besar kesalahan pemotongan korektor metode Adam Moulton adalah \(\frac{19}{720} h^3 f''(\xi) \).

PENDAHULUAN

Persamaan diferensial ordo pertama berbentuk \(F(x,y,y') = 0 \). Masalah nilai awal terdiri atas sebuah persamaan diferensial dan sebuah syarat atau kondisi yang harus dipenuhi oleh penyelesaiannya (atau beberapa syarat yang mengacu ke nilai \(x \) yang sama jika persamaan itu berordo lebih tinggi). Masalah nilai awal berbentuk \(y' = f(x,y), y(x_0) = y_0 \), dengan \(f \) diasumsikan sedemikian rupa sehingga masalah ini mempunyai penyelesaian tunggal pada interval tertentu yang mengandung \(x_0 \), (Kreyszig, 1988).

Jika rumus penyelesaian tersebut diperoleh, maka dapat dihitung secara numerik, baik secara langsung atau menggunakan tabel. Untuk pendekatan semacam ini, Kamke (1978) dan sebuah indeks tabel (Fletcher, Miller, Rosenhead dan Comre, 1962) dapat dipergunakan. Namun untuk
penyelesaiannya terlalu rumit atau jika rumus tersebut tidak ada, maka perlu diterapkan salah satu metode numerik. Pemilihan metode numerik harus didasarkan pada masalah (termasuk tujuan, sistem, dan pemodelan), besar kesalahan (galat), algoritma, analisis algoritma dan rancangan program komputer.

Secara umum metode numerik yang dapat digunakan dalam menyelesaikan persamaan diferensial terbagi dua, yaitu metode langkah tunggal (One-Step Method) dan metode langkah ganda (Multistep Method). Metode langkah tunggal ialah suatu metode yang pada setiap langkah menggunakan hanya nilai-nilai yang diperoleh pada satu langkah, yaitu satu langkah sebelumnya. Sebaliknya, suatu metode yang menggunakan nilai-nilai lebih dari satu langkah sebelumnya dinamakan metode langkah ganda. Metode Adam Moulton termasuk dalam metode langkah ganda.

Kesalahan Numerik

Kesalahan numerik timbul dari penggunaan hampiran untuk menyatakan operasi dan besaran matematika yang pasti. Menurut Chapra (1985), kesalahan meliputi kesalahan pemotongan dan kesalahan pembulatan. Tetapi apabila ditinjau dari sumber kesalahannya, dapat dibedakan menjadi kesalahan percobaan, kesalahan pemotongan, kesalahan pembulatan dan kesalahan pemrograman (Kreyszig, 1988).

Kesalahan numerik timbul dari penggunaan aproksimasi untuk menyatakan operasi dan besaran matematika yang pasti. Kesalahan pemotongan terjadi karena tidak dilakukannya hitungan sesuai dengan prosedur matematika yang benar. Kesalahan pembulatan terjadi karena tidak diperhitungkannya beberapa angka terakhir dari suatu bilangan. Kesalahan percobaan ialah

2. Erwin
kesalahan yang dikandung oleh data yang digunakan, terjadi pada data yang diperoleh dari hasil percobaan.

Secara umum, hubungan antara hasil sebenarnya dan nilai hampiran dapat dirumuskan sebagai berikut:

Nilai Sebenarnya = Nilai Hampiran + Kesalahan

atau \(\epsilon = \bar{a} - \bar{\alpha} \)

dengan \(\epsilon \) adalah kesalahan dari nilai sebenarnya (\(\bar{a} \)) dan nilai hampiran (\(\bar{\alpha} \)).

Scarborough (1966) memberikan hubungan antara kesalahan dengan jumlah angka signifikan pada hampiran yaitu: \(\epsilon_s = 0,5 \times 10^{-n} \% \) dengan \(n \) angka signifikan

Kesalahan pembulatan dapat dikurangi dengan menggunakan aturan/kaidah pembulatan yang benar. Kaidah tersebut adalah buang desimal ke-(k+1) dan seterusnya. (a) Jika bilangan yang dibuang lebih kecil daripada setengah satuan di dalam desimal yang ke-k, biarkan desimal ke-k tidak berubah. (b) Jika bilangan yang dibuang itu lebih besar daripada setengah satuan di dalam desimal ke-k, tambahkan satu desimal ke-k. (c) Jika bilangan yang dibuang itu tepat setengah satuan, bulatkan ke desimal bulat terdekat.

METODOLOGI

a. Mengkaji secara teoritis penurunan rumus metode Adam Moulton
b. Menurunkan rumusan kesalahan pemotongan prediktor metode Adam Moulton menggunakan perluasan deret Taylor.
c. Menurunkan rumusan kesalahan pemotongan korektor metode Adam Moulton menggunakan perluasan deret Taylor.
HASIL DAN PEMBAHASAN

Rumusan Metode Adam Moulton
Masalah nilai awal berbentuk:

\[y' = f(x, y), \quad y(x_0) = y_0 \quad (1) \]
dengan f adalah sedemikian hingga masalah ini mempunyai penyelesaian tunggal di dalam suatu interval tertentu yang mengandung x_0.

Dengan mengintegalkan persamaan ini dari \(x_n \) ke \(x_{n+1} = x_n + h \), diproleh

\[\int_{x_n}^{x_{n+1}} f(x, y(x)) \, dx = \int_{x_n}^{x_{n+1}} y'(x) \, dx \equiv y(x_{n+1}) - y(x_n) \quad (2) \]
bila f diganti dengan sebuah polinom interpolasi \(p_3(x) \) yang berderajat tiga, sehingga dapat diintegralkan. Sebagai \(p_3(x) \) diambil polinom yang berturut-turut, di titik-titik \(x_n, x_{n-1}, x_{n-2}, x_{n-3} \) mempunyai nilai

\[f_n = f(x_n, y_n), \quad f_{n-1} = f(x_{n-1}, y_{n-1}), \quad (3) \]

\[f_{n-2} = f(x_{n-2}, y_{n-2}), \quad f_{n-3} = f(x_{n-3}, y_{n-3}) \]
p_3(x) dapat diperoleh, misalnya, dari rumus beda langkah mundur Newton:

\[p_3(x) \propto f_n + r \xi f_n + 1/2 \ r \ (r+1) \xi^2 f_n + 1/6 \ r \ (r+1) \ (r+2) \xi^3 f_n \]
dengan \(r=(x-x_n)/h \). Integralkan \(p_3(x) \) terhadap \(x \) dari \(x_n \) sampai \(x_{n+1} = x_n + h \). Ini sama dengan mengintegalkan terhadap \(r \) dari 0 sampai 1, diproleh

\[\int_{x_n}^{x_{n+1}} p_3(x) \, dx \equiv h(f_n + \frac{1}{2} \nabla f_n + \frac{5}{12} \nabla^2 f_n + \frac{3}{8} \nabla^3 f_n) \quad (4) \]

Sebaiknya beda-beda itu diganti dengan suku-suku di dalam f:

\[\xi f_n = f_n - f_{n-1} \]

\[\xi^2 f_n = f_n - 2f_{n-1} + f_{n-2} \]

\[\xi^3 f_n = f_n - 3f_{n-1} + 3f_{n-2} - f_{n-3} \]
Subsitusikan ini ke dalam (4) dan kemudian kumpulkan suku-suku yang sama. Berdasarkan (2), diperoleh rumus langkah ganda:

\[y_{n+1}^* = y_n + \frac{h}{24} (55f_n - 59f_{n-1} + 37f_{n-2} - 9f_{n-3}) \] (5)

Persamaan (5) dinamakan prediktor (peramal).

Apabila persamaan (5) digunakan untuk mencari penyelesaian maka dinamakan metode Adam Bashforth. Korektor(pengoreksi) diperoleh melalui penalaran yang sama yaitu mengintegalkan polinom langkah mundur Newton \(\hat{p}(x) \) yang berturut-turut di \(x_{n+1}, x_n, x_{n-1}, x_{n-2} \), sama dengan \(f_{n+1}, f_n, f_{n-1}, f_{n-2} \), dalam hal ini \(f_{n+1} = f(x_{n+1}, y_{n+1}) \) dan \(f \) yang lain adalah seperti di dalam (3).

Penurunannya sangat mirip dengan penurunan (5). Perhatikan bahwa

\[\hat{p}_3(x) \equiv f_{n+1} + r\nabla f_{n+1} + \frac{1}{2} r(r+1)\nabla^2 f_{n+1} + \frac{1}{6} r(r+1)(r+2)\nabla^3 f_{n+1} \quad \text{dengan} \quad r = (x-x_{n+1})/h. \]

Selanjutnya integralkan terhadap \(x \) dari \(x_{n+1} \) seperti sebelumnya. Ini sama dengan mengintegalkan terhadap \(r \) dari -1 sampai 0. Diperoleh:

\[\int_{x_n}^{x_{n+1}} \hat{p}_3(x)dx = h(f_{n+1} - \frac{1}{2} r_1\nabla f_{n+1} - \frac{1}{12} r_2\nabla^2 f_{n+1} - \frac{1}{24} r_3\nabla^3 f_{n+1}) \]

Dengan menggantikan beda-bedanya itu di dalam nilai-nilai sebelumnya, akhirnya diperoleh rumus korektor:

\[y_{n+1} = y_n + \frac{h}{24} (9f_{n+1}^* + 19f_n - 5f_{n-1} + f_{n-2}) \] (6)

dengan \(f_{n+1}^* = f(x_{n+1}, y_{n+1}) \) dan yang lain adalah seperti di dalam (3).

Kesalahan Pemotongan Prediktor

Suatu diferensi digunakan untuk mengaproksimasi turunan:

\[f_{n-1} = f_n - hf_n' + \frac{h^2}{2} f_n'' - \frac{h^3}{6} f_n''' + \frac{h^4}{24} f_n'''' + \ldots \] (7)
\[f_{n-2} = f_n - 2hf_n' + \frac{4h^2}{2} f_n'' - \frac{8h^3}{6} f_n''' + \frac{16h^4}{24} f_n'''' + \ldots \quad (8) \]

Kemudian persamaan (7) dikalikan dua, lalu dikurangkankan dengan persamaan (8), diperoleh

\[f_n'' = \frac{f_{n-2} - 2f_{n-1} + f_n}{h^2} + hf_n''' - \frac{7}{12} h^2 f_n'''' + \ldots \quad (9) \]

Untuk mencari kesalahan pemotongan dari prediktor, digunakan diferensi deret Taylor yang lebih tinggi \(x_{n+3} \) disekitar \(x_n \):

\[f_{n-3} = f_n - 3hf_n' + \frac{9}{2} h^2 f_n'' - \frac{27}{6} h^3 f_n''' + \frac{81}{24} h^4 f_n'''' + \ldots \quad (10) \]

Kemudian persamaan (7), dikalikan tiga lalu dikurangkankan dengan persamaan (10), diperoleh:

\[f_{n-3} - 3f_{n-1} = -2f_n + 3h^2 f_n'' - 4h^3 f_n''' + \frac{39}{12} h^4 f_n'''' + \ldots \quad (11) \]

Lalu, persamaan (9) disubsitusikan ke persamaan (11) sehingga didapat:

\[f_{n-3} - 3f_{n-1} = -2f_n + 3h^2 \left[\frac{f_{n-2} - 2f_{n-1} + f_n}{h^2} + hf_n''' - \frac{7}{12} h^2 f_n'''' + \ldots \right] - 4h^3 f_n''' + \frac{39}{12} h^4 f_n'''' + \ldots \]

\[f_n''' = \frac{f_n - 3f_{n-1} + 3f_{n-2} - f_{n-3}}{h^3} + \frac{3}{2} hf_n''' + \ldots \quad (12) \]

Dari persamaan (12) disubsitusikan ke persamaan (9), diperoleh:

\[f_n'' = \frac{2f_n - 5f_{n-1} + 4f_{n-2} - f_{n-3}}{h^2} + \frac{11}{12} h^2 f_n'''' + \ldots \quad (13) \]

Kemudian persamaan (12) dan (13), disubsitusikan pada persamaan (10), diperoleh:

\[f_n' = \frac{11f_n - 18f_{n-1} + 9f_{n-2} - 2f_{n-3}}{6h} + \frac{6}{24} h^3 f_n'''' + \ldots \quad (14) \]

Untuk memperoleh kesalahan pemotongan prediktornya dari persamaan (14), (13) dan (12) disubsitusikan ke persamaan perluasan deret Taylor di titik \(x_{n+1} \), diperoleh:
\[y_{n+1} = y_n + \frac{h}{24} \left[55f_n - 59f_{n-1} + 37f_{n-2} - 9f_{n-3} \right] + \frac{251}{720} h^5 f_n^{iv}(\xi) + \ldots \]

Jadi kesalahan pemotongan prediktor metode Adam Moulton sebesar: \[\frac{251}{720} h^5 f_n^{iv}(\xi) \]

Untuk mencari kesalahan pemotongan korektorny, digunakan deret Taylor dari titik \(x_n \) disekitar titik \(x_{n+1} \) dapat ditulis sebagai berikut:

\[y_n = y_{n+1} - hf'_n + \frac{h^2}{2} f''_{n+1} - \frac{h^3}{6} f'''_{n+1} + \frac{h^4}{24} f''''_{n+1} - \frac{h^5}{120} f^{iv}_{n+1} + \ldots \]

Dengan menyelesaikan \(y_{n+1} \), didapat:

\[y_{n+1} = y_n + h \left[f_{n+1} - \frac{h}{2} f'_n + \frac{h^2}{2} f''_{n+1} - \frac{h^3}{6} f'''_{n+1} + \frac{h^4}{24} f''''_{n+1} + \ldots \right] \quad (15) \]

Suatu diferensi digunakan untuk mengaproksimasikan turunan:

\[f_n = f_{n+1} - hf'_n + \frac{h^2}{2} f''_{n+1} - \frac{h^3}{6} f'''_{n+1} + \frac{h^4}{24} f''''_{n+1} + \ldots \quad (16) \]

\[f'_{n+1} = \frac{f_{n+1} - f_n}{h} + \frac{h}{2} f''_{n+1} - \frac{h^2}{6} f'''_{n+1} + \frac{h^3}{24} f''''_{n+1} + \ldots \quad (17) \]

Untuk memperoleh kesalahan pemotongan metode ini digunakan diferensi yang lebih tinggi. Untuk itu diambil perluasan deret Taylor dari \(x_{n+1} \) di sekitar \(x_{n+1} \):

\[f_{n+1} = f_{n+1} - 2hf'_n + \frac{4}{2} h^2 f''_{n+1} - \frac{8}{6} h^3 f'''_{n+1} + \frac{16}{24} h^4 f''''_{n+1} + \ldots \quad (18) \]

Kemudian persamaan (16) dikalikan dua, lalu dikurangkan dengan persamaan (18), diperoleh:

\[f_{n+1} = \frac{f_{n+1} - 2f_n + f_{n+1}}{h^2} - \frac{4}{2} h^2 f''_{n+1} - h^3 f'''_{n+1} + \frac{7h^4}{12} f''''_{n+1} + \ldots \quad (19) \]

Lalu ambil perluasan deret Taylor yang lebih tinggi dari \(x_{n+2} \) di sekitar \(x_{n+1} \):
\[f_{n+1} - 3hf'_{n+1} + \frac{9}{2}h^2 f''_{n+1} - \frac{27}{6}h^3 f'''_{n+1} + \frac{81}{24}h^4 f''_{n+1} + \frac{243}{120}h^5 f''_{n+1} + \ldots (20) \]

Kemudian persamaan (16) dikali tiga, lalu dikurangkan dengan persamaan (20), sehingga diperoleh:

\[f_{n-2} - 3f_n = -2f_{n+1} + 3h^2 f''_{n+1} - 4h^3 f'''_{n+1} + \frac{39h^4}{12} f''_{n+1} + \ldots (21) \]

Lalu persamaan (19) disubsitusikan ke persamaan (21), diperoleh:

\[f_{n-2} - 3f_n = -2f_{n+1} + 3h^2 \left[\frac{f_{n-1} - 2f_n + f_{n+1}}{h^2} + hf'''_{n+1} - \frac{7}{12}h^2 f''_{n+1} + \ldots \right] \]

\[- 4h^3 f'''_{n+1} + \frac{39}{12} h^4 f''_{n+1} + \ldots \]

\[f'''_{n+1} = \frac{f_{n+1} - 3f_n + 3f_{n-1} - f_{n-2}}{h^3} + \frac{3}{2} h^2 f''_{n+1} + \ldots (22) \]

Dari persamaan (22) disubsitusikan ke persamaan (19), diperoleh:

\[f''_{n+1} = \frac{f_{n+1} - 2f_n + f_{n+1}}{h^2} + \frac{f_{n-1} - 3f_n + 3f_{n-1} - f_{n-2}}{h^2} + \frac{3}{2} h^2 f''_{n+1} - \frac{7}{12}h^2 f''_{n+1} + \ldots \]

\[f''_{n+1} = \frac{2f_{n+1} - 5f_n + 4f_{n-1} - f_{n-2}}{h^2} + \frac{11}{12} h^2 f''_{n+1} + \ldots (23) \]

Kemudian persamaan (22) dan (23), disubsitusikan pada persamaan (17), diperoleh:

\[f'_{n+1} = \frac{11f_{n+1} - 18f_n + 9f_{n-1} - 2f_{n-2}}{6h} + \frac{6}{24} h^3 f''_{n+1} + \ldots (24) \]

Untuk memperoleh kesalahan pemotongan korektornya dari tiga persamaan (24), (23) dan (22) disubsitusikan ke persamaan (15), diperoleh:

\[y_{n+1} = y_n + \frac{h}{24} \left[9f_{n+1} + 19f_n - 5f_{n-1} - f_{n-2} \right] - \frac{19}{720} h^5 f''_{n+1} (\xi) + \ldots \]

Jadi kesalahan pemotongan korektor metode Adam Moulton adalah \(- \frac{19}{720} h^5 f''_{n+1} (\xi) \).
KESIMPULAN

Penyelesaian dengan metode Adam Moulton lebih cepat dibandingkan dengan metode langkah tunggal, karena dalam metode Adam Moulton hanya dibutuhkan beberapa nilai f yang baru per langkah. Kelemahan metode Adam Moulton adalah metode ini tidak dapat dimulai sendiri karena dibutuhkan nilai empat nilai taksiran \(f_n, f_{n-1}, f_{n-2}, \) dan \(f_{n-3} \).

\[
y^*_n = y_n + \frac{h}{24} \left(55f_n - 59f_{n-1} + 37f_{n-2} - 9f_{n-3} \right)
\]

Metode Adam Moulton dapat menghasilkan nilai dugaan kesalahan, yang dapat diperoleh dari rumus korektor.

\[
y_{n+1} = y_n + \frac{h}{24} \left(9y^*_n + 19f_n - 5f_{n-1} + f_{n-2} \right)
\]

Besar kesalahan prediktor \(\frac{251}{720} h^5 f_n^{iv} (\xi) \) dan kesalahan korektor \(-\frac{19}{720} h^5 f_n^{iv} (\xi) \).

DAFTAR PUSTAKA

Rusniah, 1998, Analisis Kesalahan Metode Prediktor-Korektor dalam menyelesaikan Persamaan Diferensial Biasa Orde Satu, Skripsi, Fakultas MIPA, Unisri

Scarborough, J.B., 1966, Numerical Mathematical Analysis, Ed. 6, Baltimore, Johns Hopkins Press