Model Epidemik Tuberkulosis Seir dengan Terapi pada Individu Terinfeksi
Abstract
Full Text:
PDFReferences
Allen, L., J.. S., and Burgin, A., M. 2000, Comparison of Deterministic and Stochastic SIS and SIR Models in Discrete Time, Mathematical Biosciences, 163 (1): 1-33
A’maludin, H., Faruk, A., Cahyono, E. S. 2016, Analisis Kestabilan Model Epidemik SIR untuk Penyakit Tuberkulosis. Prosiding SEMIRATA Bidang MIPA 2016, 207-213
Bhunu, C., P., Gariraa, W., Mukandavirea, Z., and Zimbab, M. 2008, Tuberculosis Transmission Model with Chemoprophylaxis and Treatment. Bulletin of Mathematical Biology, 70(4): 1163–1191
Brauer, F., and Castillo-Chavez, C. 2012, Mathematical Models in Population Biology and Epidemiology 2nd Edi-tion, New York: Springer
Crofton, S., J. 2009, Crofton's Clinical Tuberculosis 3rd Edition, Oxfords: Macmillan Publishers Limited
Herrera, M., Bosch, P., Nájera, M., Aguilera, X., 2013. Modeling the Spread of Tuberculosis in Semiclosed Communities. Computational and Mathematical Methods in Medicine, 2013: --
Nainggolan, J., Supian, S., Supriatna, A. K., and Anggriani, N. 2013, Mathematical Model Of Tubercu-losis Transmission With Reccurent Infection And Vac-cination, Journal of Physics: Conference Series, 423(2013): 1-8
Rafei, A., Pasha, E., Orak, R. J., 2012. Tuberculosis Surveillance Using a Hidden Markov Model. Iranian Journal Public Health, 41 (10): 87-96
Takahashi, A., Spreadbury, J., Scotti, J., 2010. Modeling the Spread of Tuberculosis in a Closed Population. Laporan Hasil Penelitian
Sudoyo, A., W. 2006, Buku Ajar Ilmu Penyakit Dalam Jilid II. Jakarta: Fakultas Kedokteran Universitas Indonesia
DOI: https://doi.org/10.56064/jps.v18i3.16
Refbacks
- There are currently no refbacks.
Â
Â
Jurnal Penelitian Sains (JPS) Published by UP2M, Faculty of Mathematic and Natural Science Sriwijaya University is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Â
View My Stats