Model Epidemik Tuberkulosis Seir dengan Terapi pada Individu Terinfeksi

Alfensi Faruk

Abstract


The spread of tuberculosis (TB) among individuals in the population can be described by the epidemic  model, which is a mathematical model that divides the population into four subpopulations i.e. susceptible ( ), exposed ( ), infected ( ), and recovered ( ). The objective of this research is to build an epidemic  model for TB transmission by involving total therapy rate ( ) in infected subpopulation.  To illustrate the effects of , a numerical simulation  with different values of    was also carried out using R software. The results showed that the greater value of the total therapy rate, the decrease in the number of in­dividuals in infected subpopulation  became faster.

Full Text:

PDF

References


Allen, L., J.. S., and Burgin, A., M. 2000, Comparison of Deterministic and Stochastic SIS and SIR Models in Discrete Time, Mathematical Biosciences, 163 (1): 1-33

A’maludin, H., Faruk, A., Cahyono, E. S. 2016, Analisis Kestabilan Model Epidemik SIR untuk Penyakit Tuberkulosis. Prosiding SEMIRATA Bidang MIPA 2016, 207-213

Bhunu, C., P., Gariraa, W., Mukandavirea, Z., and Zimbab, M. 2008, Tuberculosis Transmission Model with Chemoprophylaxis and Treatment. Bulletin of Mathematical Biology, 70(4): 1163–1191

Brauer, F., and Castillo-Chavez, C. 2012, Mathematical Models in Population Biology and Epidemiology 2nd Edi-tion, New York: Springer

Crofton, S., J. 2009, Crofton's Clinical Tuberculosis 3rd Edition, Oxfords: Macmillan Publishers Limited

Herrera, M., Bosch, P., Nájera, M., Aguilera, X., 2013. Modeling the Spread of Tuberculosis in Semiclosed Communities. Computational and Mathematical Methods in Medicine, 2013: --

Nainggolan, J., Supian, S., Supriatna, A. K., and Anggriani, N. 2013, Mathematical Model Of Tubercu-losis Transmission With Reccurent Infection And Vac-cination, Journal of Physics: Conference Series, 423(2013): 1-8

Rafei, A., Pasha, E., Orak, R. J., 2012. Tuberculosis Surveillance Using a Hidden Markov Model. Iranian Journal Public Health, 41 (10): 87-96

Takahashi, A., Spreadbury, J., Scotti, J., 2010. Modeling the Spread of Tuberculosis in a Closed Population. Laporan Hasil Penelitian

Sudoyo, A., W. 2006, Buku Ajar Ilmu Penyakit Dalam Jilid II. Jakarta: Fakultas Kedokteran Universitas Indonesia




DOI: https://doi.org/10.56064/jps.v18i3.16

Refbacks

  • There are currently no refbacks.


   

  

 

 

Creative Commons License

Jurnal Penelitian Sains (JPS) Published by UP2M, Faculty of Mathematic and Natural Science Sriwijaya University is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

 

View My Stats