Simulasi Pembangkit Listrik Proton Exchange Membrane Fuel Cell (PEMFC) untuk Kebutuhan Daya Rumah 1000 Watt

Jefri Jefri, Dedi Rohendi, Barlin Barlin, Assaidah Assaidah

Abstract


Penelitian ini menyajikan simulasi pembangkit listrik Proton Exchange Membrane Fuel Cell (PEMFC) untuk perumahan, mempertimbangkan 100 rumah masing-masing membutuhkan 1000 watt pada tegangan 220 V. Simulasi menunjukkan bahwa untuk mencapai kapasitas daya ini, diperlukan pasokan gas hidrogen sebesar 1609,29, 1514,76, dan 1484,94 gram per jam pada tekanan 1, 2, dan 3 atm. Kondisi optimal terjadi pada suhu 333K (60°C) dan tekanan 3 atm dengan efisiensi 30,72%. Tegangan keluaran optimal adalah 0,56 V menggunakan 393 sel, mendekati 220 V yang ditargetkan. Hasil sampingan berupa air dan panas masing-masing rata-rata 359,62 watt dan 0,0020 mL/jam. Asumsi pengeluaran bulanan mencapai Rp. 17.237.929, sehingga dibutuhkan konsep yang lebih efisien untuk hasil yang lebih ekonomis. Penelitian ini memberikan wawasan tentang kelayakan dan optimasi pembangkit listrik berbasis PEMFC untuk aplikasi perumahan.


Full Text:

PDF

References


C. Briggs, D. Gilfillan, M. Hefner, E. Marland, and G. Marland, “Annual Estimates of Global and National CO^2 Emissions from Fossil Fuels: Tracking Revisions to The United Nations Energy Statistics Database Input Energy Data,” Environ. Data Sci., vol. 2, pp. 1–13, 2023, doi: 10.1017/eds.2023.38.

Y. M. A. Welaya, M. M. El Gohary, and N. R. Ammar, “A comparison between fuel cells and other alternatives for marine electric power generation,” Int. J. Nav. Archit. Ocean Eng., vol. 3, no. 2, pp. 141–149, 2011, doi: 10.3744/JNAOE.2011.3.2.141.

J. Wang and W. Azam, “Natural Resource Scarcity, Fossil Fuel Energy Consumption, and Total Greenhouse Gas Emissions in Top Emitting Countries,” Geosci. Front., vol. 15, no. 2, p. 101757, 2024, doi: 10.1016/j.gsf.2023.101757.

H. S. Kang, M. H. Kim, and Y. H. Shin, “Thermodynamic modeling and performance analysis of a combined power generation system based on HT-PEMFC and ORC,” Energies, vol. 13, no. 23, pp. 1–18, 2020, doi: 10.3390/en13236163.

E. Colombo, A. Baricci, A. Bisello, L. Guetaz, and A. Casalegno, “PEMFC performance decay during real-world automotive operation: Evincing degradation mechanisms and heterogeneity of ageing,” J. Power Sources, vol. 553, no. July 2022, p. 232246, 2023, doi: 10.1016/j.jpowsour.2022.232246.

X. Chen et al., “Thermodynamic study of a hybrid PEMFC-solar energy multi-generation system combined with SOEC and dual Rankine cycle,” Energy Convers. Manag., vol. 226, no. October, p. 113512, 2020, doi: 10.1016/j.enconman.2020.113512.

Y. D. Herlambang and A. Roihatin, “Teknologi Pembangkit Listrik Energi Baru Terbarukan Menggunakan Proton Exchange Membrane (PEM) Fuel Cell Skala Kecil,” Eksergi, vol. 15, no. 1, p. 27, 2019, doi: 10.32497/eksergi.v15i1.1464.

Y. D. Herlambang, K. Kurnianingsih, A. Roihatin, and F. Arifin, “Unjukkerja Electrolyzer tipe Dry Cell Terhadap Variasi Konsentrasi Elektrolit dan Arus Listrik pada Mesin PEM Fuel Cell Skala Kecil untuk Pembangkit Listrik,” J. Rekayasa Mesin, vol. 16, no. 3, p. 447, 2021, doi: 10.32497/jrm.v16i3.3077.

EG&G Services and I. Parson, Fuel Cell Handbook, Fifth Edit. U.S Departmen of of Energy, 2000.

A. Mansouri, S. A. Alenabi, and R. Gavagsaz-ghoachani, “Investigating Performance of Hydrogen Fuel Cells in Different Charge Transfer Coefficients and its Effect on Maximum PowerPoint,” Iran. J. Energy Environ., vol. 15, no. 3, pp. 311–318, 2024, doi: 10.5829/ijee.2024.15.03.10.

C. Spiegel, PEM Fuel Cell : Modelling and SImulation Using Matlab. Elsevier, 2008.

V. A. Kashyap, PEM Fuel Cell Power Plant Simulation Using Matlab. University of South Alabama, 2004.

M. Tawalbeh, S. Alarab, A. Al-Othman, and R. M. N. Javed, “The Operating Parameters, Structural Composition, and Fuel Sustainability Aspects of PEM Fuel Cells: A Mini Review,” Fuels, vol. 3, no. 3, pp. 449–474, 2022, doi: 10.3390/fuels3030028.

A. Zucconi, J. Hack, R. Stocker, T. A. M. Suter, A. J. E. Rettie, and D. J. L. Brett, “Challenges and opportunities for characterisation of high-temperature polymer electrolyte membrane fuel cells: a review,” J. Mater. Chem. A, vol. 12, no. 14, pp. 8014–8064, 2024, doi: 10.1039/d3ta06895a.

Q. Meyer, C. Yang, Y. Cheng, and C. Zhao, Overcoming the Electrode Challenges of High-Temperature Proton Exchange Membrane Fuel Cells, vol. 6, no. 1. Springer Nature Singapore, 2023. doi: 10.1007/s41918-023-00180-y.

U. I. F. Styana and N. Uyasaroh, “Pengaruh Laju Alir dan Tekanan Hidrogen terhadap Arus dan Tegangan yang Dihasilkan oleh Proton Exchange Membrane Fuel Cell ,” pp. 382–388, 2019.

J. J. Stephanos and A. W. Addison, “Free Energi and Temperature at Constant Pressure,” in Energy Free Gibss, Elsevier, 2023, p. 171.

G. Anilkumar, N. Puneetha, G. V. Brahmendra Kumar, K. Palanisamy, and A. Gupta, “Design and testing of proton exchange membrane fuel cell (PEMFC) power pack for platform vehicle,” IOP Conf. Ser. Mater. Sci. Eng., vol. 937, no. 1, pp. 0–12, 2020, doi: 10.1088/1757-899X/937/1/012007.

G. Radica, I. Tolj, M. V. Lototskyy, and S. Pasupathi, “Air Mass Flow and Pressure Optimization of a PEM Fuel Cell Hybrid System for a Forklift Application,” Energies, vol. 17, no. 1, 2024, doi: 10.3390/en17010120.

V. Tjahyono, M. R. Kirom, and A. Qurthobi, “Analisis pengaruh temperatur terhadap daya




DOI: https://doi.org/10.56064/jps.v26i2.986

Refbacks

  • There are currently no refbacks.


   

  

 

 

Creative Commons License

Jurnal Penelitian Sains (JPS) Published by UP2M, Faculty of Mathematic and Natural Science Sriwijaya University is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

 

View My Stats