Pengkuantuman Tak Setara dan Statistika Kuantum bagi Sistem Zarah Identik Tanpa Spin
Abstract
Telah dikaji pengkuantuman tak setara dan kaitannya dengan statistika kuantum bagi sistem zarah identik tanpa spin. Pengkuantuman tak setara bagi sistem berpadanan-(1-1) dengan wakilan uniter tak tersusutkan (WUTT) grup fundamental π1(QN(Ʃ)) bagi ruang konfigurasi sistem QN(Ʃ) yang isomorfis dengan grup braid BN(Ʃ). Statistika bagi sistem diberikan oleh wakilan yang berbeda bagi çN(Ʃ) yang merupakan subgrup bagi BN(Ʃ) yang dibangkitkan oleh permutasi zarah σ. Dari elaborasi yang telah dilakukan tampak bahwa untuk sistem zarah identik tak berspin, statistika skalar yang berpadanan-(1-1) dengan WUTT berdimensi-1 bagi grup braid BN(Ʃ) terrangkum dalam statistika- ϴ (statistika fraksional) dengan statistika Bose dan Fermi merupakan kasus khusus bagi statistika itu. Sementara WUTT berdimensi lebih tinggi bagi BN(Ʃ) akan memberikan berbagai jenis statistika yang lebih kaya.
Full Text:
PDFReferences
Isham, C.J., 1984, Topological and Global Aspects of Quantum Theory, Elsevier Science Publisher B.V., Amsterdam
Imbo, T.D. dan J.M. Russell, 1990, Exotic Statistics on Surfaces, Lyman Lab. of Physics, Harvard University, Cambridge, MA 02138
Imbo, T.D., C.S. Imbo, dan E.C.G. Sudarshan, 1990, Identical Particles, Exotic Statistics and Braid Groups, Phys. Lett. B, vol. 234, hal. 103-107
Gervais, J.L. dan J.F. Russel, 1994, Solving the Strongly Coupled 2D Gravity: 2, Fractional-spin Operator, and Topological Three-point, Nucl. Phys. B, vol. 426, hal. 140-186
Gervais, J.L. dan Schnittger, 1994, Continuous Spin in 2D Gravity: Chiral Vertex Operator and Local Field, Nucl. Phys. B, vol. 431, hal. 273-312
Haldane, F.D.M., 1991, â€Fractional Statistics†in Arbitrary Dimensions: A Generalization of the Pauli Principle, Phys. Rev. Lett, vol. 67, no. 8, hal. 837-940
Satriawan, M., 2004, Grand Canonical Partition Function for Parastatistical Systems, Phys. J. IPS, vol. C8, hal. 0515
Golterman, M. dan Y. Shamir, 2003, Fermion-number Violation in Regularizations that Preserve Fermion-number Symmetry, Phys. Rev. D, vol. 67, hal. 014501
Green, H.S., 1953, A Generalized Method of Field Quantization, Phys. Rev., vol. 90, hal. 270-273
Messiah, A.M.L. dan O.W. Greenberg, 1964, Symmetrization Postulate and Its Eksperimental Foundation, Phys. Rev., vol. 136B, hal. 248-267
Okayama, T., 1952, Generalization of Statistics, Prog. Theor. Phys., vol. 7, hal. 517-534
Sudarshan, E.C.G., T.D. Imbo, dan T.R. Govindarajan, 1988a, Configuration Space Topology and Quantum Internal Symmetries, Phys. Lett. B, vol. 213, no. 4, hal. 471-476
Imbo, T.D. dan E.C.G. Sudarshan, 1988, Inequivalent Quantizations and Fundamentally Perfect Space, Phys. Rev. Lett., vol. 60, no. 6, hal. 481-483
Laidlaw, M.G.G. dan C.M. DeWitt, 1971, Feynman Functional Integrals for Systems of Indistinguishable Particles, Phys. Rev. D, vol. 3, no. 6, hal. 1375-1378
Nattermann, P., 1997, Dynamics in Borel-Quantization: Nonlinear Schro-dinger Equations vs. Master Equations, Dissertation, Mathematisch-Natur-wissenschaftlichen Fakultat, Technischen Universitat Clausthal, Germany [16] Hatcher, A., 2002, Algebraic Topology, Cambridge Univ. Press, New York
Spanier, E.H., 1971, Algebraic Topology, edisi Tmh, Tata McGraw-Hill Pub. Co. Ltd., New Delhi
Birman, J.S., 1969, On Braid Groups, Comm. Pure Appl. Math., vol. 22, hal. 41-72
Humphreys, J.F., 1996, A Course in Group Theory, hal. 163-173, Oxford University Press, Oxford
Wang, W., 2002, Algebraic Structures behind Hilbert Schemes and Wreath Product, arXiv:math.QA/0011103
Balachandran, A.P., T.D. Imbo, dan C.S. Imbo, 1988, Topological and Algebraic Aspect of Quantization: Symmetries and Statistics, Ann. Inst. Henri Poincare, vol. 49, no. 3, hal. 387-396
Hatsugai, Y., M. Kohmoto, dan Y.S. Wu, 1991a, Braid Groups, Anyons and Gauge Invariance (On Topologically Nontrivial Surfaces), Technical Report of ISSP, vol. Ser.A, no. 2489
Hatsugai, Y., M. Kohmoto, dan Y.S. Wu, 1991b, Multi-Sheet Configuration Space and Fractional Quantum Statistics, Technical Report of ISSP, vol. Ser.A, no. 2456
Sudarshan, E.C.G., T.D. Imbo, dan C.S. Imbo, 1988b, Topological and Algebraic Aspects of Quantizations: Symmetries and Statistics, Ann. Inst. Henri Poincare, vol. 49, no. 3, hal. 387-396
Balachandran, A.P., T. Einarsson, T.R. Govindarajan, dan R. Ramachandran, 1991, Statistics and Spin on Two-Dimensional Surfaces,Goteborg ITP 91-8 (Subm. To Mod. Phys. Lett. A)
Einarsson, T., 1991, Fractional Statistics on Compact Surfaces, Goteborg ITP 91-1 (Invited Brief Review for Mod. Phys. Lett. B)
Lomont, J.S., 1959, Application of Finite Groups, Academic Press, New York
Bama, A.A., M. Satriawan, M.F. Rosyid, dan Muslim, 2004, Inequivalent Quantizations of Identical Particle System in a Universe with a Wormhole, dalam Proceeding of the First Jogja Regional Physics Conference 2004, Section D, Yogyakarta, Indonesia, 11 September 2004, hal. 65-71, Universitas Gadjah Mada, Yogyakarta, Indonesia
Gibbons, G.W. dan S.W. Hawking, 1992, Kinks and Topology Change, Phys. Rev. Lett, vol. 69, no. 12, hal. 1719-1721
Gibbons, G.W., 1993a, Skyrmions and topology change, Class. Quantum Grav., vol. 10, hal. L89-L91
Gibbons, G.W., 1993b, Topology and topology change in general relativity, Class. Quantum Grav., vol. 10, hal. S75-S78
Bama, A.A., 2007, Statistika Kuantum Sistem Zarah Identik yang Digelar di dalam Ruang dengan Topologi Berubah, Disertasi, Universitas Gadjah Mada, Yogyakarta, Indonesia
DOI: https://doi.org/10.56064/jps.v12i3.166
Refbacks
- There are currently no refbacks.
Â
Â
Jurnal Penelitian Sains (JPS) Published by UP2M, Faculty of Mathematic and Natural Science Sriwijaya University is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Â
View My Stats