Review Sifat-sifat dan Karakteristik Fotokatalitik Fe3O4/SiO2/TiO2 Untuk Mengatasi Polusi Air
Abstract
Air sebagai sumber kehidupan yang tak ternilai di bumi yang selalu digunakan setiap hari kini dihadapkan pada ancaman serius seperti polusi. Para peneliti dunia sedang mencari solusi inovatif untuk mengatasi masalah ini. Artikel ini menunjukkan tinjauan mengenai berbagai metode sintesis bahan Fe3O4, SiO2 dan TiO2 yang bertujuan untuk mengatasi polusi air. Dengan penerapan strategi seperti kopresipitasi, sol-gel dan hidrotermal, bahan-bahan tersebut berhasil membentuk nanopartikel berkualitas tinggi dengan ukuran dan distribusi yang dapat dikendalikan. Dari beberapa penelitian dan karakterisasi menunjukkan bahwa kombinasi Fe3O4/SiO2/TiO2 dapat digunakan sebagai katalis untuk mendegradasi zat polutan dalam air. Adapun beberapa indikator seperti pemilihan pelarut yang tepat, pengaturan suhu, tekanan, dan interval waktu yang cermat, merupakan kunci untuk mencapai langkah signifikan dalam mengatasi polusi air.
Full Text:
PDFReferences
A. Y. Putra and F. Mairizki, “Penentuan Kandungan Logam Berat Pada Air Tanah Di Kecamatan Kubu Babussalam, Rokan Hilir, Riau,†J. Katalisator, vol. 5, no. 1, p. 47, 2020, doi: 10.22216/jk.v5i1.5277.
Y. Pasmawati, R. Renilaili, C. D. Kusmindari, A. Zahri, and S. Hardini, “Pengolahan Air Rawa Menjadi Air Bersih,†J. Altifani Penelit. dan Pengabdi. Kpd. Masy., vol. 3, no. 1, pp. 27–33, 2023, doi: 10.25008/altifani.v3i1.317.
B. K. Mishra, P. Kumar, C. Saraswat, S. Chakraborty, and A. Gautam, “Water security in a changing environment: Concept, challenges and solutions,†Water (Switzerland), vol. 13, no. 4, 2021, doi: 10.3390/w13040490.
R. Erdoo Kukwa, D. Tyoker Kukwa, A. David Oklo, T. Thaddeus Ligom, B. Ishwah, and J. Ajegi Omenka, “Adsorption Studies of Silica Adsorbent Using Rice Husk as a Base Material for Metal Ions Removal from Aqueous Solution,†Am. J. Chem. Eng., vol. 8, no. 2, p. 48, 2020, doi: 10.11648/j.ajche.20200802.12.
R. Teschke, “Aluminum, Arsenic, Beryllium, Cadmium, Chromium, Cobalt, Copper, Iron, Lead, Mercury, Molybdenum, Nickel, Platinum, Thallium, Titanium, Vanadium, and Zinc: Molecular Aspects in Experimental Liver Injury,†Int. J. Mol. Sci., vol. 23, no. 20, 2022, doi: 10.3390/ijms232012213.
Mutia Oktarina Permai Yenny, Arief Hartono, Syaiful Anwar, and Yumei Kang, “Assessment of heavy metals pollution in sediment of Citarum River, Indonesia,†J. Pengelolaan Sumberd. Alam dan Lingkung. (Journal Nat. Resour. Environ. Manag., vol. 10, no. 4, pp. 584–593, 2020, doi: 10.29244/jpsl.10.4.584-593.
A. Boretti and L. Rosa, “Reassessing the projections of the World Water Development Report,†npj Clean Water, vol. 2, no. 1, 2019, doi: 10.1038/s41545-019-0039-9.
R. Yousif, M. I. CHOUDHARY, S. AHMED, and Q. AHMED, “Review: Bioaccumulation of heavy metals in fish and other aquatic organisms from Karachi Coast, Pakistan,†Nusant. Biosci., vol. 13, no. 1, pp. 73–84, 2021, doi: 10.13057/nusbiosci/n130111.
S. Firza, S. Nita, S. A. Fitri, and J. Akmal, “Time milling influence on the size of the Lemabang iron sand powder synthesized by using high energy milling method,†J. Phys. Conf. Ser., vol. 1091, no. 1, 2018, doi: 10.1088/1742-6596/1091/1/012008.
N. Esfandiari, M. Kashefi, S. Afsharnezhad, and M. Mirjalili, “Insight into enhanced visible light photocatalytic activity of Fe3O4–SiO2–TiO2 core-multishell nanoparticles on the elimination of Escherichia coli,†Mater. Chem. Phys., vol. 244, no. September 2019, p. 122633, 2020, doi: 10.1016/j.matchemphys.2020.122633.
J. Gunlazuardi, A. Fisli, Ridwan, Y. K. Krisnandi, and D. Robert, “Magnetically Separable Fe3O4/SiO2/TiO2 Photocatalyst Composites Prepared through Hetero Agglomeration for the Photocatalytic Degradation of Paraquat,†Makara J. Sci., vol. 25, no. 4, pp. 236–246, 2021, doi: 10.7454/mss.v25i4.1277.
S. Behzadi, B. Nonahal, S. J. Royaee, and A. A. Asadi, “Tio2/SiO2/Fe3O4magnetic nanoparticles synthesis and application in methyl orange UV photocatalytic removal,†Water Sci. Technol., vol. 82, no. 11, pp. 2432–2445, 2020, doi: 10.2166/wst.2020.509.
N. Rahimi, R. A. Pax, and E. M. A. Gray, “Review of functional titanium oxides. I: TiO2 and its modifications,†Prog. Solid State Chem., vol. 44, no. 3, pp. 86–105, 2016, doi: 10.1016/j.progsolidstchem.2016.07.002.
H. E. Cheng, C. H. Hung, I. S. Yu, and Z. P. Yang, “Strongly enhancing photocatalytic activity of tio2 thin films by multi-heterojunction technique,†Catalysts, vol. 8, no. 10, 2018, doi: 10.3390/catal8100440.
S. Wardiyati et al., “Pengaruh Penambahan SiO 2 …… Siti Wardiyati dkk PENGARUH PENAMBAHAN SiO 2 TERHADAP KARAKTERISTIK DAN KINERJA FOTOKATALITIK Fe 3 O 4 /TiO 2 PADA DEGRADASI METHYLENE BLUE (THE SiO 2 ADDITION EFFECT TO Fe 3 O 4 /TiO 2 PHOTOCATALYTIC CHARACTERISTIC AND PERFOR,†pp. 37–40, 2016.
J. L. Marques et al., “Removal of Al (III) and Fe (III) from binary system and industrial effluent using chitosan films,†Int. J. Biol. Macromol., vol. 120, pp. 1667–1673, 2018, doi: 10.1016/j.ijbiomac.2018.09.135.
D. Bouazza, H. Miloudi, M. Adjdir, A. Tayeb, and A. Boos, “Competitive adsorption of Cu (II) and Zn (II) on impregnate raw Algerian bentonite and efficiency of extraction,†Appl. Clay Sci., vol. 151, pp. 118–123, Jan. 2018, doi: 10.1016/j.clay.2017.10.026.
M. Kavand, P. Eslami, and L. Razeh, “The adsorption of cadmium and lead ions from the synthesis wastewater with the activated carbon: Optimization of the single and binary systems,†J. Water Process Eng., vol. 34, no. 101151, 2020, doi: 10.1016/j.jwpe.2020.101151.
Y. Wei et al., “Fast and efficient removal of As(III) from water by CuFe2O4 with peroxymonosulfate: Effects of oxidation and adsorption,†Water Res., vol. 150, pp. 182–190, 2019, doi: 10.1016/j.watres.2018.11.069.
T. Girardet, P. Venturini, H. Martinez, J. C. Dupin, F. Cleymand, and S. Fleutot, “Spinel Magnetic Iron Oxide Nanoparticles: Properties, Synthesis and Washing Methods,†Appl. Sci., vol. 12, no. 16, 2022, doi: 10.3390/app12168127.
A. A. Usman and Mashuri, “Magnetic properties of rGO/Fe3O4 microparticles composites based on natural materials,†AIP Conf. Proc., vol. 2120, 2019, doi: 10.1063/1.5115688.
S. Salsabila, L. Rohman, and E. Purwandari, “Study of the Ferromagnetic Magnetite Resonance (Fe3O4) Forms of Thin Films Using Micromagnetic Simulation,†Comput. Exp. Res. Mater. Renew. Energy, vol. 3, no. 1, p. 10, 2020, doi: 10.19184/cerimre.v3i1.26414.
S. Mitra, High-Pressure Geochemistry and Mineral Physics Basics for Planetology and Geo-material Science: Chapter 9 - AB2X4 Structure, vol. 9. 2007. doi: 10.31826/9781463217822-010.
K. Nee Koo, A. Fauzi Ismail, M. Hafiz Dzarfan Othman, M. A. Rahman, and T. Zhong Sheng, “Preparation and characterization of superparamagnetic magnetite (Fe3O4) nanoparticles: A short review,†Malaysian J. Fundam. Appl. Sci., vol. 15, no. 1, pp. 23–31, 2019.
N. Minh Dang, T. Hung-Vu, X. Shoujun, and L. T. Randall, “Fe3O4 Nanoparticles: Structures, Synthesis, Magnetic Properties, Surface Functionalization, and Emerging Applications,†Appl. Sci., vol. 11, no. 11301, pp. 1–34, 2021.
S. Liu, B. Yua, S. Wanga, Y. Shena, and H. Conga, “Preparation, Surface Functionalization andApplication of Fe3O4 Magnetic Nanoparticles Shixiang Liu,†Adv. Colloid Interface Sci., vol. 281, no. 102165, 2020.
D. Lisjak and A. Mertelj, “Anisotropic magnetic nanoparticles: A review of their properties, syntheses and potential applications,†Prog. Mater. Sci., vol. 95, pp. 286–328, 2018, doi: 10.1016/j.pmatsci.2018.03.003.
X. Yang, W. Chen, J. Huang, Y. Zhou, Y. Zhu, and C. Li, “Rapid degradation of methylene blue in a novel heterogeneous Fe3O4 @rGO@TiO2-catalyzed photo-Fenton system,†Sci. Rep., vol. 5, no. May, pp. 1–10, 2015, doi: 10.1038/srep10632.
J. A. Fuentes-GarcÃa, A. I. Diaz-Cano, A. Guillen-Cervantes, and J. Santoyo-Salazar, “Magnetic domain interactions of Fe3O4 nanoparticles embedded in a SiO2 matrix,†Sci. Rep., vol. 8, no. 1, pp. 2–11, 2018, doi: 10.1038/s41598-018-23460-w.
K. T. Drisya et al., “Electronic and optical competence of TiO2/BiVO4 nanocomposites in the photocatalytic processes,†Sci. Rep., vol. 10, no. 1, pp. 1–16, 2020, doi: 10.1038/s41598-020-69032-9.
M. Ulfa, D. Prasetyoko, W. Trisunaryanti, H. Bahruji, and Z. A. Fadila, “The effect of gelatin as pore expander in green synthesis mesoporous silica for methylene blue adsorption,†Sci. Rep., pp. 1–12, 2022, doi: 10.1038/s41598-022-19615-5.
W. Li et al., “Experimental study on shear property and rheological characteristic of superfine cement grouts with nano-SiO2 addition,†Constr. Build. Mater., vol. 228, 2019, doi: 10.1016/j.conbuildmat.2019.117046.
S. Narzary, K. Alamelu, V. Raja, and B. M. Jaffar Ali, “Visible light active, magnetically retrievable Fe3O4@SiO2@g-C3N4/TiO2 nanocomposite as efficient photocatalyst for removal of dye pollutants,†J. Environ. Chem. Eng., vol. 8, no. 5, 2020, doi: 10.1016/j.jece.2020.104373.
Q. Feng et al., “Synthesis of high specific surface area silica aerogel from rice husk ash via ambient pressure drying,†Colloids Surfaces A Physicochem. Eng. Asp., vol. 539, pp. 399–406, 2018, doi: 10.1016/j.colsurfa.2017.12.025.
S. Rohilla et al., “Excellent uvâ€light triggered photocatalytic performance of zno.Sio2 nanocomposite for water pollutant compound methyl orange dye,†Nanomaterials, vol. 11, no. 10, pp. 1–17, 2021, doi: 10.3390/nano11102548.
P. Sharma, J. Kherb, J. Prakash, and R. Kaushal, “A novel and facile green synthesis of SiO2 nanoparticles for removal of toxic water pollutants,†Appl. Nanosci., vol. 13, no. 1, pp. 735–747, 2023, doi: 10.1007/s13204-021-01898-1.
H. R. Ali, H. N. Nassar, and N. S. El-Gendy, “Green synthesis of α-Fe2O3 using Citrus reticulum peels extract and water decontamination from different organic pollutants,†Energy Sources, Part A Recover. Util. Environ. Eff., vol. 39, no. 13, pp. 1425–1434, 2017, doi: 10.1080/15567036.2017.1336818.
Y. Ma, Y. Wang, T. Jiang, F. Zhang, X. Li, and Y. Zhu, “Hydrothermal synthesis of novel 1-aminoperylene diimide/TiO2/MoS2 composite with enhanced photocatalytic activity,†Sci. Rep., vol. 10, no. 1, pp. 1–15, 2020, doi: 10.1038/s41598-020-78894-y.
Y. Zhang et al., “Titanate and titania nanostructured materials for environmental and energy applications: A review,†RSC Adv., vol. 5, no. 97, pp. 79479–79510, 2015, doi: 10.1039/c5ra11298b.
A. G. Dylla, G. Henkelman, and K. J. Stevenson, .“, Acc. Chem. Res., 2013, 46, 1104-1112.,†Acc. Chem. Res, vol. 46, no. 1104–1112, 2013.
M. Lv et al., “v,†Energy Environ. Sci., vol. 6, no. 1615–1622, 2013.
M. Abd Elkodous et al., “Carbon-dot-loaded CoxNi1−xFe2O4; x = 0.9/SiO2/TiO2 nanocomposite with enhanced photocatalytic and antimicrobial potential: An engineered nanocomposite for wastewater treatment,†Sci. Rep., vol. 10, no. 1, pp. 1–22, 2020, doi: 10.1038/s41598-020-68173-1.
F. Wang et al., “Corn-like, recoverable γ-Fe2O3@SiO2@TiO2 photocatalyst induced by magnetic dipole interactions,†Sci. Rep., vol. 7, no. 1, pp. 2–11, 2017, doi: 10.1038/s41598-017-07417-z.
S. Teixeira et al., “Photocatalytic degradation of recalcitrant micropollutants by reusable Fe3O4/SiO2/TiO2 particles,†J. Photochem. Photobiol. A Chem., vol. 345, pp. 27–35, 2017, doi: 10.1016/j.jphotochem.2017.05.024.
H. H. Mungondori, S. Ramujana, D. M. Katwire, and R. T. Taziwa, “Synthesis of a novel visible light responsive γ-Fe 2 O 3 /SiO 2 / C-TiO 2 magnetic nanocomposite for water treatment,†Water Sci. Technol., vol. 78, no. 12, pp. 2500–2510, 2018, doi: 10.2166/wst.2019.004.
N. Yan et al., “Hollow Porous SiO2 nanocubes towards high-performance anodes for lithium-ion batteries,†Sci. Rep., vol. 3, pp. 1–6, 2013, doi: 10.1038/srep01568.
L. Hao, H. Song, L. Zhang, X. Wan, Y. Tang, and Y. Lv, “SiO 2/graphene composite for highly selective adsorption of Pb(II) ion,†J. Colloid Interface Sci., vol. 369, no. 1, pp. 381–387, 2012, doi: 10.1016/j.jcis.2011.12.023.
X. L. Chen, F. Li, H. Y. Chen, H. J. Wang, and G. G. Li, “Fe2O3/TiO2 functionalized biochar as a heterogeneous catalyst for dyes degradation in water under Fenton processes,†J. Environ. Chem. Eng., vol. 8, no. 4, 2020, doi: 10.1016/j.jece.2020.103905.
G. Shilpa, P. M. Kumar, P. R. Deepthi, A. Sukhdev, P. Bhaskar, and D. K. Kumar, “Improved Photocatalytic Performance of Fe3O4/TiO2 Thin Film in the Degradation of MB Dye Under Sunlight Radiation,†Brazilian J. Phys., vol. 53, no. 2, pp. 1–8, 2023, doi: 10.1007/s13538-022-01243-z.
A. Babyszko, A. Wanag, M. Sadłowski, E. Kusiak-Nejman, and A. W. Morawski, “Synthesis and Characterization of SiO2/TiO2 as Photocatalyst on Methylene Blue Degradation,†Catalysts, vol. 12, no. 11, 2022, doi: 10.3390/catal12111372.
J. Wang et al., “SiO2 mediated templating synthesis of γ-Fe2O3/MnO2 as peroxymonosulfate activator for enhanced phenol degradation dominated by singlet oxygen,†Appl. Surf. Sci., vol. 560, 2021, doi: 10.1016/j.apsusc.2021.149984.
P. Mishra, S. Patnaik, and K. Parida, “An overview of recent progress on noble metal modified magnetic Fe 3 O 4 for photocatalytic pollutant degradation and H 2 evolution,†Catal. Sci. Technol., vol. 9, no. 4, pp. 916–941, 2019, doi: 10.1039/c8cy02462f.
X. Xue, V. Sukhotskiy, and E. P. Furlani, “Optimization of Optical Absorption of Colloids of SiO2@Au and Fe3O4@Au Nanoparticles with Constraints,†Sci. Rep., vol. 6, pp. 1–10, 2016, doi: 10.1038/srep35911.
M. Kapoor and J. R. Hwu, “Na@SiO2-Mediated Addition of Organohalides to Carbonyl Compounds for the Formation of Alcohols and Epoxides,†Sci. Rep., vol. 6, pp. 6–13, 2016, doi: 10.1038/srep36225.
S. Gurbán et al., “Electron irradiation induced amorphous SiO2 formation at metal oxide/Si interface at room temperature; Electron beam writing on interfaces,†Sci. Rep., vol. 8, no. 1, pp. 1–7, 2018, doi: 10.1038/s41598-018-20537-4.
B. S. Vasile, C. Chircov, M. Matei, and I. A. Neacs, “Iron Oxide – Silica Core – Shell Nanoparticles Functionalized with Essential Oils for Antimicrobial Therapies,†pp. 1–26, 2021.
M. F. Ingham, B., & Toney, X-ray diffraction for characterizing metallic films. In Metallic Films for Electronic, Optical and Magnetic Applications. 2014.
J. R. . Ross and Elsevier, Catalyst characterization. In Contemporary Catalysis. 2019.
Sunaryono et al., “Magneto-elasticity in hydrogels containing Fe3O4 nanoparticles and their potential applications,†AIP Conf. Proc., vol. 1555, no. 1555, pp. 53–56, 2013, doi: 10.1063/1.4820992.
I. Morales et al., “High frequency hysteresis losses on γ-Fe2O3 and Fe3O4: Susceptibility as a magnetic stamp for chain formation,†Nanomaterials, vol. 8, no. 12, 2018, doi: 10.3390/nano8120970.
L. Maldonado-Camargo, M. Unni, and C. Rinaldi, “Magnetic characterization of iron oxide nanoparticles for biomedical applications,†Methods Mol. Biol., vol. 1570, pp. 47–71, 2017, doi: 10.1007/978-1-4939-6840-4_4.
J. X. J. Zhang and K. Hoshino, Nanomaterials for molecular sensing. In Molecular Sensors and Nanodevices, 2nd ed. 2019.
S. S. Mohapatra, S. Ranjan, N. Dasgupta, R. K. Mishra, S. Thomas, and Elsevier, Nanohybrid filler-based drug-delivery system. In Nanocarriers for Drug Delivery. 2019.
M. Montazer and T. Harifi, Magnetic nanofinishes for textiles. In Nanofinishing of Textile Materials. 2018.
R. Rezaei Kalantary et al., “Nitrate adsorption by synthetic activated carbon magnetic nanoparticles: kinetics, isotherms and thermodynamic studies,†Desalin. Water Treat., vol. 57, no. 35, pp. 16445–16455, 2016, doi: 10.1080/19443994.2015.1079251.
B. MirzaHedayat, M. Noorisepehr, E. Dehghanifard, A. Esrafili, and R. Norozi, “Evaluation of photocatalytic degradation of 2,4-Dinitrophenol from synthetic wastewater using Fe3O4@SiO2@TiO2/rGO magnetic nanoparticles,†J. Mol. Liq., vol. 264, no. 2017, pp. 571–578, 2018, doi: 10.1016/j.molliq.2018.05.102.
H. Wang, H. L. Wang, W. F. Jiang, and Z. Q. Li, “Photocatalytic degradation of 2,4-dinitrophenol (DNP) by multi-walled carbon nanotubes (MWCNTs)/TiO2 composite in aqueous solution under solar irradiation,†Water Res., vol. 43, no. 1, pp. 204–210, 2009, doi: 10.1016/j.watres.2008.10.003.
G. D. Tarigh, F. Shemirani, and N. S. Maz’hari, “Fabrication of a reusable magnetic multi-walled carbon nanotube-TiO2 nanocomposite by electrostatic adsorption: Enhanced photodegradation of malachite green,†RSC Adv., vol. 5, no. 44, pp. 35070–35079, 2015, doi: 10.1039/c4ra15593a.
R. Wang, X. Wang, X. Xi, R. Hu, and G. Jiang, “Preparation and photocatalytic activity of magnetic Fe3O 4/SiO2/TiO2 composites,†Adv. Mater. Sci. Eng., vol. 2012, 2012, doi: 10.1155/2012/409379.
C. Hui et al., “Core-shell Fe3O4@SiO2 nanoparticles synthesized with well-dispersed hydrophilic Fe3O4 seeds,†Nanoscale, vol. 3, no. 2, pp. 701–705, 2011, doi: 10.1039/c0nr00497a.
G. Jiang et al., “Preparation of Cu2O/TiO2 composite porous carbon microspheres as efficient visible light-responsive photocatalysts,†Powder Technol., vol. 212, no. 1, pp. 284–288, 2011, doi: 10.1016/j.powtec.2011.04.025.
R. Wang et al., “Photocatalytic activity of heterostructures based on TiO2 and halloysite nanotubes,†ACS Appl. Mater. Interfaces, vol. 3, no. 10, pp. 4154–4158, 2011, doi: 10.1021/am201020q.
J. Edianta, N. Fauzi, M. Naibaho, F. S. Arsyad, and I. Royani, “Review of the effectiveness of plant media extracts in barium hexaferrite magnets (Bafe12o19),†Sci. Technol. Indones., vol. 6, no. 2, pp. 39–52, 2021, doi: 10.26554/STI.2021.6.2.39-52.
S. Gholamrezaei, M. Salavati-Niasari, D. Ghanbari, and S. Bagheri, “Hydrothermal preparation of silver telluride nanostructures and photo-catalytic investigation in degradation of toxic dyes,†Sci. Rep., vol. 6, pp. 1–13, 2016, doi: 10.1038/srep20060.
Y. Fan, C. Ma, W. Li, and Y. Yin, “Synthesis and properties of Fe 3O 4/SiO 2/TiO 2 nanocomposites by hydrothermal synthetic method,†Mater. Sci. Semicond. Process., vol. 15, no. 5, pp. 582–585, 2012, doi: 10.1016/j.mssp.2012.04.013.
Y. Lu, Y. Yin, B. Mayers, and Y. Xia, Nano Letters 2. 2002.
DOI: https://doi.org/10.56064/jps.v25i2.849
Refbacks
- There are currently no refbacks.
Â
Â
Jurnal Penelitian Sains (JPS) Published by UP2M, Faculty of Mathematic and Natural Science Sriwijaya University is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Â
View My Stats